A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

被引:1
作者
Gutierrez, Hernan A. Cuti [1 ]
Nyamoradi, Nemat [2 ]
Ledesma, Cesar E. Torres [1 ]
机构
[1] Univ Nacl Trujillo, Inst Invest Matemat, FCA Res Grp, FCFYM,Dept Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 06期
关键词
Riemann-Liouville and Caputo tempered fractional derivatives; impulsive effects; tempered fractional space of Sobolev type; variational meth- ods; HAMILTONIAN-SYSTEMS; EXISTENCE;
D O I
10.11948/20240068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
引用
收藏
页码:3496 / 3519
页数:24
相关论文
共 50 条
  • [41] Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives
    Idczak, Dariusz
    Kamocki, Rafal
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2015, 26 (01) : 193 - 206
  • [42] Solvability of Anti-periodic BVPs for Impulsive Fractional Differential Systems Involving Caputo and Riemann-Liouville Fractional Derivatives
    Liu, Yuji
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 125 - 152
  • [43] On a sequential fractional differential problem with Riemann-Liouville integral conditions
    Benmehidi, Hammou
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 893 - 915
  • [44] Multi-point boundary value problems for a class of Riemann-Liouville fractional differential equations
    Li, Bingxian
    Sun, Shurong
    Li, Yanan
    Zhao, Ping
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [45] Impulsive fractional differential equations with Riemann-Liouville derivative and iterative learning control
    Chen, Qian
    Debbouche, Amar
    Luo, Zijian
    Wang, JinRong
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 111 - 118
  • [46] NONLOCAL FRACTIONAL SUM BOUNDARY VALUE PROBLEMS FOR MIXED TYPES OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENCE EQUATIONS
    Soontharanon, J.
    Jasthitikulchai, N.
    Sitthiwirattham, T.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (03): : 409 - 429
  • [47] Monotone iterative technique for periodic problem involving Riemann-Liouville fractional derivatives in Banach spaces
    Ding, Yonghong
    Li, Yongxiang
    BOUNDARY VALUE PROBLEMS, 2018,
  • [48] Fractional Sobolev space with Riemann-Liouville fractional derivative and application to a fractional concave-convex problem
    Ledesma, Cesar E. Torres
    Bonilla, Manuel C. Montalvo
    ADVANCES IN OPERATOR THEORY, 2021, 6 (04)
  • [49] TIME OPTIMAL CONTROLS FOR FRACTIONAL DIFFERENTIAL SYSTEMS WITH RIEMANN-LIOUVILLE DERIVATIVES
    Lian, TingTing
    Fan, ZhenBin
    Li, Gang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (06) : 1524 - 1541
  • [50] Positivity and uniqueness of solutions for Riemann-Liouville fractional problem of delta types
    Srivastava, Hari Mohan
    Mohammed, Pshtiwan Othman
    Baleanu, Dumitru
    Yousif, Majeed A.
    Ibrahim, Ibrahim S.
    Abdelwahed, Mohamed
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 114 : 173 - 178