A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

被引:1
作者
Gutierrez, Hernan A. Cuti [1 ]
Nyamoradi, Nemat [2 ]
Ledesma, Cesar E. Torres [1 ]
机构
[1] Univ Nacl Trujillo, Inst Invest Matemat, FCA Res Grp, FCFYM,Dept Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 06期
关键词
Riemann-Liouville and Caputo tempered fractional derivatives; impulsive effects; tempered fractional space of Sobolev type; variational meth- ods; HAMILTONIAN-SYSTEMS; EXISTENCE;
D O I
10.11948/20240068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
引用
收藏
页码:3496 / 3519
页数:24
相关论文
共 50 条