A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

被引:1
|
作者
Gutierrez, Hernan A. Cuti [1 ]
Nyamoradi, Nemat [2 ]
Ledesma, Cesar E. Torres [1 ]
机构
[1] Univ Nacl Trujillo, Inst Invest Matemat, FCA Res Grp, FCFYM,Dept Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 06期
关键词
Riemann-Liouville and Caputo tempered fractional derivatives; impulsive effects; tempered fractional space of Sobolev type; variational meth- ods; HAMILTONIAN-SYSTEMS; EXISTENCE;
D O I
10.11948/20240068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
引用
收藏
页码:3496 / 3519
页数:24
相关论文
共 50 条
  • [21] Positive solutions for a Riemann-Liouville-type impulsive fractional integral boundary value problem
    Zhang, Keyu
    Sun, Qian
    O'Regan, Donal
    Xu, Jiafa
    AIMS MATHEMATICS, 2024, 9 (05): : 10911 - 10925
  • [22] Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions
    Passary, Donny
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AIMS MATHEMATICS, 2024, 9 (01): : 218 - 239
  • [23] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [24] Boundary value problem with tempered fractional derivatives and oscillating term
    Ledesma, Cesar E. Torres
    Cuti, Hernan
    Rodriguez, Jesus Avalos
    Bonilla, Manuel Montalvo
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (04)
  • [25] Boundary value problem with tempered fractional derivatives and oscillating term
    César E. Torres Ledesma
    Hernán Cuti
    Jesús Ávalos Rodríguez
    Manuel Montalvo Bonilla
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [26] A Chebyshev spectral method for solving Riemann-Liouville fractional boundary value problems
    Graef, John R.
    Kong, Lingju
    Wang, Min
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 241 : 140 - 150
  • [27] Approximate Controllability for Impulsive Riemann-Liouville Fractional Differential Inclusions
    Liu, Zhenhai
    Bin, Maojun
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [28] POSITIVE SOLUTIONS FOR SUPERLINEAR RIEMANN-LIOUVILLE FRACTIONAL BOUNDARY-VALUE PROBLEMS
    Bachar, Imed
    Maagli, Habib
    Radulescu, Vicentiu D.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [29] Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative
    Wei, Zhongli
    Dong, Wei
    Che, Junling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3232 - 3238
  • [30] Nonlocal Boundary Value Problems for Riemann-Liouville Fractional Differential Inclusions with Hadamard Fractional Integral Boundary Conditions
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Thaiprayoon, Chatthai
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01): : 91 - 107