A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

被引:1
|
作者
Gutierrez, Hernan A. Cuti [1 ]
Nyamoradi, Nemat [2 ]
Ledesma, Cesar E. Torres [1 ]
机构
[1] Univ Nacl Trujillo, Inst Invest Matemat, FCA Res Grp, FCFYM,Dept Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[2] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 06期
关键词
Riemann-Liouville and Caputo tempered fractional derivatives; impulsive effects; tempered fractional space of Sobolev type; variational meth- ods; HAMILTONIAN-SYSTEMS; EXISTENCE;
D O I
10.11948/20240068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
引用
收藏
页码:3496 / 3519
页数:24
相关论文
共 50 条
  • [1] On Impulsive Boundary Value Problem with Riemann-Liouville Fractional Order Derivative
    Khan, Zareen A.
    Gul, Rozi
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [2] Fractional boundary value problems with Riemann-Liouville fractional derivatives
    Tan, Jingjing
    Cheng, Caozong
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [3] On a singular Riemann-Liouville fractional boundary value problem with parameters
    Tudorache, Alexandru
    Luca, Rodica
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (01): : 151 - 168
  • [4] Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives
    Fu, Zhengqing
    Bai, Shikun
    O'Regan, Donal
    Xu, Jiafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [5] Boundary value problems with four orders of Riemann-Liouville fractional derivatives
    Niyom, Somboon
    Ntouyas, Sotiris K.
    Laoprasittichok, Sorasak
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [6] Boundary value problems with four orders of Riemann-Liouville fractional derivatives
    Somboon Niyom
    Sotiris K Ntouyas
    Sorasak Laoprasittichok
    Jessada Tariboon
    Advances in Difference Equations, 2016
  • [7] The general solution of impulsive systems with Riemann-Liouville fractional derivatives
    Zhang, Xianmin
    Ding, Wenbin
    Peng, Hui
    Liu, Zuohua
    Shu, Tong
    OPEN MATHEMATICS, 2016, 14 : 1125 - 1137
  • [8] A Note on a Kirchhoff type Boundary Value Problem Involving Riemann-Liouville Fractional Derivative
    Rehman, Nadeem ur
    Alyami, Maryam Ahmed
    Alhirabi, Hawatin Mohammed
    Ghanmi, Abdeljabbar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [9] Positive solutions for a boundary-value problem with Riemann-Liouville fractional derivative
    Xu, Jiafa
    Wei, Zhongli
    Ding, Youzheng
    LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (04) : 462 - 476
  • [10] The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative
    Saoudi, Kamel
    Agarwal, Praveen
    Kumam, Poom
    Ghanmi, Abdeljabbar
    Thounthong, Phatiphat
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,