A CNN-RF Hybrid Approach for Rice Paddy Fields Mapping in Indramayu Using Sentinel-1 and Sentinel-2 Data

被引:0
作者
Sudiana, Dodi [1 ,2 ]
Rizkinia, Mia [1 ,2 ]
Arief, Rahmat [3 ]
De Arifani, Tiara [1 ]
Lestari, Anugrah Indah [3 ]
Kushardono, Dony [3 ]
Prabuwono, Anton Satria [4 ]
Sumantyo, Josaphat Tetuko Sri [5 ,6 ]
机构
[1] Univ Indonesia, Fac Engn, Dept Elect Engn, Depok 16424, Indonesia
[2] Univ Indonesia, Fac Engn, Artificial Intelligence & Data Engn AIDE Res Ctr, Depok 16424, Indonesia
[3] Res Org Elect & Informat, Res Ctr Geoinformat, Natl Res & Innovat Agcy, Bandung 40135, Indonesia
[4] Univ Teknol PETRONAS, Fac Sci & Informat Technol, Dept Comp & Informat Sci, Seri Iskandar 32610, Perak, Malaysia
[5] Chiba Univ, Ctr Environm Remote Sensing, Chiba 2638522, Japan
[6] Univ Sebelas Maret, Dept Elect Engn, Surakarta 57126, Indonesia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Convolutional neural networks; Accuracy; Laser radar; Feature extraction; Spatial resolution; Optical imaging; Synthetic aperture radar; Sentinel-1; Radio frequency; Adaptive optics; Rice paddy field; paddy mapping; CNN-RF; GLCM; Sentinel;
D O I
10.1109/ACCESS.2025.3537818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rice, cultivated in paddy fields, is one of the staple foods in the world, especially in Asia. In Indonesia, a substantial number of rice paddy fields have been converted into residential or industrial areas, threatening food security. Therefore, it is necessary to monitor the adequacy of rice paddy field areas. Recently, remote sensing has become the most widely used method for mapping rice paddy fields. This research focuses on developing a classification model for rice paddy field mapping using remote sensing with radar and optical data fusion, including input variations in polarization, texture, and optical derivative indices. This study proposes the CNN-RF method, which combines a convolutional neural network (CNN) as a feature extractor and a random forest (RF) as a classifier. The experiment used combinations of input data, including variations of single and multisource data, to achieve optimal results. Research findings in some districts of Indramayu show that the scheme combining Sentinel-1 features with GLCM (gray-level co-occurrence matrix) and Sentinel-2 features with selected bands provides the best results, with an overall accuracy of 98.23% and a Kappa coefficient of 0.96, using the CNN-RF method. CNN-RF outperforms other classifiers owing to the hybrid learning combination, which improves the accuracy through feature extraction by CNN and handles complex relationships between features while reducing overfitting by RF. This study contributes to the development of accurate and efficient rice paddy field mapping techniques using remote sensing.
引用
收藏
页码:23234 / 23246
页数:13
相关论文
共 50 条
  • [31] Paddy Rice Mapping in Thailand Using Time-Series Sentinel-1 Data and Deep Learning Model
    Xu, Lu
    Zhang, Hong
    Wang, Chao
    Wei, Sisi
    Zhang, Bo
    Wu, Fan
    Tang, Yixian
    REMOTE SENSING, 2021, 13 (19)
  • [32] Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale
    Attarzadeh, Reza
    Amini, Jalal
    Notarnicola, Claudia
    Greifeneder, Felix
    REMOTE SENSING, 2018, 10 (08)
  • [33] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Qasim, Mohammad
    Csaplovics, Elmar
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (03)
  • [34] Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions
    Steinhausen, Max J.
    Wagner, Paul D.
    Narasimhan, Balaji
    Waske, Bjoern
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 595 - 604
  • [35] Automatic Mapping of Rice Growth Stages Using the Integration of SENTINEL-2, MOD13Q1, and SENTINEL-1
    Ramadhani, Fadhlullah
    Pullanagari, Reddy
    Kereszturi, Gabor
    Procter, Jonathan
    REMOTE SENSING, 2020, 12 (21) : 1 - 21
  • [36] SENTINEL-1 & SENTINEL-2 DATA FOR SOIL TILLAGE CHANGE DETECTION
    Satalino, G.
    Mattia, F.
    Balenzano, A.
    Lovergine, F. P.
    Rinaldi, M.
    De Santis, A. P.
    Ruggieri, S.
    Nafria Garcia, D. A.
    Paredes Gomez, V.
    Ceschia, E.
    Planells, M.
    Le Toan, T.
    Ruiz, A.
    Moreno, J. F.
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 6627 - 6630
  • [37] Application of Sentinel-1 and Sentinel-2 data to conduct reconnaissance analyses
    Jenerowicz, Agnieszka
    Orych, Agata
    Siok, Katarzyna
    Smiarowski, Michal
    ELECTRO-OPTICAL REMOTE SENSING XIII, 2019, 11160
  • [38] SENTINEL-1 AND SENTINEL-2 DATA FUSION FOR URBAN CHANGE DETECTION
    Benedetti, Alessia
    Picchiani, Matteo
    Del Frate, Fabio
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1962 - 1965
  • [39] Sentinel-1 and Sentinel-2 Data Fusion for Urban Change Detection Using a Dual Stream U-Net
    Hafner, Sebastian
    Nascetti, Andrea
    Azizpour, Hossein
    Ban, Yifang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [40] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029