A CNN-RF Hybrid Approach for Rice Paddy Fields Mapping in Indramayu Using Sentinel-1 and Sentinel-2 Data

被引:0
|
作者
Sudiana, Dodi [1 ,2 ]
Rizkinia, Mia [1 ,2 ]
Arief, Rahmat [3 ]
De Arifani, Tiara [1 ]
Lestari, Anugrah Indah [3 ]
Kushardono, Dony [3 ]
Prabuwono, Anton Satria [4 ]
Sumantyo, Josaphat Tetuko Sri [5 ,6 ]
机构
[1] Univ Indonesia, Fac Engn, Dept Elect Engn, Depok 16424, Indonesia
[2] Univ Indonesia, Fac Engn, Artificial Intelligence & Data Engn AIDE Res Ctr, Depok 16424, Indonesia
[3] Res Org Elect & Informat, Res Ctr Geoinformat, Natl Res & Innovat Agcy, Bandung 40135, Indonesia
[4] Univ Teknol PETRONAS, Fac Sci & Informat Technol, Dept Comp & Informat Sci, Seri Iskandar 32610, Perak, Malaysia
[5] Chiba Univ, Ctr Environm Remote Sensing, Chiba 2638522, Japan
[6] Univ Sebelas Maret, Dept Elect Engn, Surakarta 57126, Indonesia
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Convolutional neural networks; Accuracy; Laser radar; Feature extraction; Spatial resolution; Optical imaging; Synthetic aperture radar; Sentinel-1; Radio frequency; Adaptive optics; Rice paddy field; paddy mapping; CNN-RF; GLCM; Sentinel;
D O I
10.1109/ACCESS.2025.3537818
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rice, cultivated in paddy fields, is one of the staple foods in the world, especially in Asia. In Indonesia, a substantial number of rice paddy fields have been converted into residential or industrial areas, threatening food security. Therefore, it is necessary to monitor the adequacy of rice paddy field areas. Recently, remote sensing has become the most widely used method for mapping rice paddy fields. This research focuses on developing a classification model for rice paddy field mapping using remote sensing with radar and optical data fusion, including input variations in polarization, texture, and optical derivative indices. This study proposes the CNN-RF method, which combines a convolutional neural network (CNN) as a feature extractor and a random forest (RF) as a classifier. The experiment used combinations of input data, including variations of single and multisource data, to achieve optimal results. Research findings in some districts of Indramayu show that the scheme combining Sentinel-1 features with GLCM (gray-level co-occurrence matrix) and Sentinel-2 features with selected bands provides the best results, with an overall accuracy of 98.23% and a Kappa coefficient of 0.96, using the CNN-RF method. CNN-RF outperforms other classifiers owing to the hybrid learning combination, which improves the accuracy through feature extraction by CNN and handles complex relationships between features while reducing overfitting by RF. This study contributes to the development of accurate and efficient rice paddy field mapping techniques using remote sensing.
引用
收藏
页码:23234 / 23246
页数:13
相关论文
共 50 条
  • [21] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Monde Rapiya
    Abel Ramoelo
    Wayne Truter
    Environmental Monitoring and Assessment, 2023, 195
  • [22] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (12)
  • [23] An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data
    Bazzi, Hassan
    Baghdadi, Nicolas
    Amin, Ghaith
    Fayad, Ibrahim
    Zribi, Mehrez
    Demarez, Valerie
    Belhouchette, Hatem
    REMOTE SENSING, 2021, 13 (13)
  • [24] MF-BHNet: A Hybrid Multimodal Fusion Network for Building Height Estimation Using Sentinel-1 and Sentinel-2 Imagery
    Wang, Siyuan
    Cai, Bowen
    Hou, Dongyang
    Ding, Qing
    Wang, Jiaming
    Shao, Zhenfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [25] Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation
    Nativel, Simon
    Ayari, Emna
    Rodriguez-Fernandez, Nemesio
    Baghdadi, Nicolas
    Madelon, Remi
    Albergel, Clement
    Zribi, Mehrez
    REMOTE SENSING, 2022, 14 (10)
  • [26] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [27] Unsupervised mapping of rice paddy fields and their inundation patterns using Sentinel-1 SAR images and GIS
    McGiven, Lauren E.
    Mueller, Marc F.
    EUROPEAN JOURNAL OF REMOTE SENSING, 2025, 58 (01)
  • [28] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [29] Wall-to-wall mapping of tree extent in the tropics with Sentinel-1 and Sentinel-2
    Brandt, John
    Ertel, Jessica
    Spore, Justine
    Stolle, Fred
    REMOTE SENSING OF ENVIRONMENT, 2023, 292
  • [30] Assessment of Sentinel-1 and Sentinel-2 Data for Landslides Identification using Google Earth Engine
    Nugroho, Ferman Setia
    Danoedoro, Projo
    Arjasakusuma, Sanjiwana
    Candra, Danang Surya
    Bayanuddin, Athar Abdurrahman
    Samodra, Guruh
    2021 7TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2021,