TimeNorm: a novel normalization method for time course microbiome data

被引:0
作者
Luo, Qianwen [1 ]
Lu, Meng [2 ]
Butt, Hamza [3 ]
Lytal, Nicholas [4 ]
Du, Ruofei [5 ]
Jiang, Hongmei [6 ]
An, Lingling [1 ,2 ,3 ]
机构
[1] Univ Arizona, Dept Biosyst Engn, Tucson, AZ 85721 USA
[2] Univ Arizona, Grad Interdisciplinary Program Stat & Data Sci, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Biostat & Epidemiol, Tucson, AZ 85721 USA
[4] Calif State Univ Chico, Dept Math & Stat, Chico, CA USA
[5] Univ Arkansas Med Sci, Dept Biostat, Little Rock, AR USA
[6] Northwestern Univ, Dept Stat & Data Sci, Evanston, IL USA
基金
美国农业部;
关键词
microbiome; metagenomics; normalization; time-course; dominant features; longitudinal; DIFFERENTIAL ABUNDANCE ANALYSIS; GUT MICROBIOTA;
D O I
10.3389/fgene.2024.1417533
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Metagenomic time-course studies provide valuable insights into the dynamics of microbial systems and have become increasingly popular alongside the reduction in costs of next-generation sequencing technologies. Normalization is a common but critical preprocessing step before proceeding with downstream analysis. To the best of our knowledge, currently there is no reported method to appropriately normalize microbial time-series data. We propose TimeNorm, a novel normalization method that considers the compositional property and time dependency in time-course microbiome data. It is the first method designed for normalizing time-series data within the same time point (intra-time normalization) and across time points (bridge normalization), separately. Intra-time normalization normalizes microbial samples under the same condition based on common dominant features. Bridge normalization detects and utilizes a group of most stable features across two adjacent time points for normalization. Through comprehensive simulation studies and application to a real study, we demonstrate that TimeNorm outperforms existing normalization methods and boosts the power of downstream differential abundance analysis.
引用
收藏
页数:11
相关论文
共 28 条
  • [21] A scaling normalization method for differential expression analysis of RNA-seq data
    Robinson, Mark D.
    Oshlack, Alicia
    [J]. GENOME BIOLOGY, 2010, 11 (03):
  • [22] Microbiota: a key orchestrator of cancer therapy
    Roy, Soumen
    Trinchieri, Giorgio
    [J]. NATURE REVIEWS CANCER, 2017, 17 (05) : 271 - +
  • [23] SplinectomeR Enables Group Comparisons in Longitudinal Microbiome Studies
    Shields-Cutler, Robin R.
    Al-Ghalith, Gabe A.
    Yassour, Moran
    Knights, Dan
    [J]. FRONTIERS IN MICROBIOLOGY, 2018, 9
  • [24] Shon W.-J., 2019, Current Developments in Nutrition, V3, DOI [10.1093/cdn/nzz040.P20-041-19, DOI 10.1093/CDN/NZZ040.P20-041-19]
  • [25] A robust approach for identifying differentially abundant features in metagenomic samples
    Sohn, Michael B.
    Du, Ruofei
    An, Lingling
    [J]. BIOINFORMATICS, 2015, 31 (14) : 2269 - 2275
  • [26] The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice
    Turnbaugh, Peter J.
    Ridaura, Vanessa K.
    Faith, Jeremiah J.
    Rey, Federico E.
    Knight, Rob
    Gordon, Jeffrey I.
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2009, 1 (06)
  • [27] Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization
    Zhang, Lihua
    Dong, Danfeng
    Jiang, Cen
    Li, Zhen
    Wang, Xuefeng
    Peng, Yibing
    [J]. ANAEROBE, 2015, 34 : 1 - 7
  • [28] You are what you eat: diet, health and the gut microbiota
    Zmora, Niv
    Suez, Jotham
    Elinav, Eran
    [J]. NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2019, 16 (01) : 35 - 56