TimeNorm: a novel normalization method for time course microbiome data

被引:0
作者
Luo, Qianwen [1 ]
Lu, Meng [2 ]
Butt, Hamza [3 ]
Lytal, Nicholas [4 ]
Du, Ruofei [5 ]
Jiang, Hongmei [6 ]
An, Lingling [1 ,2 ,3 ]
机构
[1] Univ Arizona, Dept Biosyst Engn, Tucson, AZ 85721 USA
[2] Univ Arizona, Grad Interdisciplinary Program Stat & Data Sci, Tucson, AZ 85721 USA
[3] Univ Arizona, Dept Biostat & Epidemiol, Tucson, AZ 85721 USA
[4] Calif State Univ Chico, Dept Math & Stat, Chico, CA USA
[5] Univ Arkansas Med Sci, Dept Biostat, Little Rock, AR USA
[6] Northwestern Univ, Dept Stat & Data Sci, Evanston, IL USA
基金
美国农业部;
关键词
microbiome; metagenomics; normalization; time-course; dominant features; longitudinal; DIFFERENTIAL ABUNDANCE ANALYSIS; GUT MICROBIOTA;
D O I
10.3389/fgene.2024.1417533
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Metagenomic time-course studies provide valuable insights into the dynamics of microbial systems and have become increasingly popular alongside the reduction in costs of next-generation sequencing technologies. Normalization is a common but critical preprocessing step before proceeding with downstream analysis. To the best of our knowledge, currently there is no reported method to appropriately normalize microbial time-series data. We propose TimeNorm, a novel normalization method that considers the compositional property and time dependency in time-course microbiome data. It is the first method designed for normalizing time-series data within the same time point (intra-time normalization) and across time points (bridge normalization), separately. Intra-time normalization normalizes microbial samples under the same condition based on common dominant features. Bridge normalization detects and utilizes a group of most stable features across two adjacent time points for normalization. Through comprehensive simulation studies and application to a real study, we demonstrate that TimeNorm outperforms existing normalization methods and boosts the power of downstream differential abundance analysis.
引用
收藏
页数:11
相关论文
共 28 条
  • [1] Differential expression analysis for sequence count data
    Anders, Simon
    Huber, Wolfgang
    [J]. GENOME BIOLOGY, 2010, 11 (10):
  • [2] Antibiotic-Induced Changes in the Intestinal Microbiota and Disease
    Becattini, Simone
    Taur, Ying
    Pamer, Eric G.
    [J]. TRENDS IN MOLECULAR MEDICINE, 2016, 22 (06) : 458 - 478
  • [3] An omnibus test for differential distribution analysis of microbiome sequencing data
    Chen, Jun
    King, Emily
    Deek, Rebecca
    Wei, Zhi
    Yu, Yue
    Grill, Diane
    Ballman, Karla
    [J]. BIOINFORMATICS, 2018, 34 (04) : 643 - 651
  • [4] GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data
    Chen, Li
    Reeve, James
    Zhang, Lujun
    Huang, Shengbing
    Wang, Xuefeng
    Chen, Jun
    [J]. PEERJ, 2018, 6
  • [5] IMAGE SEGMENTATION BY CLUSTERING
    COLEMAN, GB
    ANDREWS, HC
    [J]. PROCEEDINGS OF THE IEEE, 1979, 67 (05) : 773 - 785
  • [6] Host lifestyle affects human microbiota on daily timescales
    David, Lawrence A.
    Materna, Arne C.
    Friedman, Jonathan
    Campos-Baptista, Maria I.
    Blackburn, Matthew C.
    Perrotta, Allison
    Erdman, Susan E.
    Alm, Eric J.
    [J]. GENOME BIOLOGY, 2014, 15 (07):
  • [7] A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    Dillies, Marie-Agnes
    Rau, Andrea
    Aubert, Julie
    Hennequet-Antier, Christelle
    Jeanmougin, Marine
    Servant, Nicolas
    Keime, Celine
    Marot, Guillemette
    Castel, David
    Estelle, Jordi
    Guernec, Gregory
    Jagla, Bernd
    Jouneau, Luc
    Laloe, Denis
    Le Gall, Caroline
    Schaeffer, Brigitte
    Le Crom, Stephane
    Guedj, Mickael
    Jaffrezic, Florence
    [J]. BRIEFINGS IN BIOINFORMATICS, 2013, 14 (06) : 671 - 683
  • [8] Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions
    Evans, Ciaran
    Hardin, Johanna
    Stoebel, Daniel M.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2018, 19 (05) : 776 - 792
  • [9] The dynamic microbiome
    Gerber, Georg K.
    [J]. FEBS LETTERS, 2014, 588 (22) : 4131 - 4139
  • [10] Taxonomic composition and seasonal dynamics of the air microbiome in West Siberia
    Gusareva, Elena S.
    Gaultier, Nicolas P. E.
    Premkrishnan, Balakrishnan N., V
    Kee, Carmon
    Lim, Serene Boon Yuean
    Heinle, Cassie E.
    Purbojati, Rikky W.
    Nee, Ang Poh
    Lohar, Sachin R.
    Yanqing, Koh
    Kharkov, Vladimir N.
    Drautz-Moses, Daniela, I
    Stepanov, Vadim A.
    Schuster, Stephan C.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)