A Simple Mixed-Supervised Learning Method for Salient Object Detection

被引:0
|
作者
Gong, Congjin [1 ,2 ]
Yang, Gang [1 ]
Dong, Haoyu [1 ]
机构
[1] Northeastern Univ, Shenyang 110819, Peoples R China
[2] DUT Artificial Intelligence Inst, Dalian 116024, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT V | 2023年 / 14090卷
基金
中国国家自然科学基金;
关键词
Salient object detection; Mixed-Supervised learning; NETWORK;
D O I
10.1007/978-981-99-4761-4_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly supervised salient object detection aims to address the limitations of fully supervised methods that heavily rely on pixel-level data. However, the sparse nature of weak labels often results in suboptimal detection accuracy. Drawing inspiration from human visual attention mechanisms, we propose a Mixed-Supervised Learning method to mitigate this issue. Mixed-Supervised Learning refers to training a neural network with hybrid data. Specifically, we propose a two-stage training strategy. In stage I, the model is supervised by a large number of scribble annotations so that it can roughly locate salient objects. In stage II, a small number of pixel-level labels are used for learning to endow the model with detail decoding capability. Our training strategy decomposes the SOD task into two sub-tasks, object localization and detail refinement, and we design a corresponding network, LRNet, which includes the supplementary detail information, a Feature Attention module (FA), and a Detail Refinement module (DF). The two-stage training strategy is simple and generalizable. Extensive experiments demonstrate the effectiveness of the training strategy, and our model detection accuracy surpasses the existing state-of-the-art models of weakly supervised learning, even reaching fully supervised results. Besides, experiments on COD and RSI SOD tasks demonstrate the generality of our method. Our code will be released at https://github.com/nightmengna/LRNet.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [21] Deeply Supervised Salient Object Detection with Short Connections
    Hou, Qibin
    Cheng, Ming-Ming
    Hu, Xiaowei
    Borji, Ali
    Tu, Zhuowen
    Torr, Philip H. S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (04) : 815 - 828
  • [22] Weakly supervised salient object detection via image category annotation
    Zhang, Ruoqi
    Huang, Xiaoming
    Zhu, Qiang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 21359 - 21381
  • [23] Semi-supervised Active Salient Object Detection
    Lv, Yunqiu
    Liu, Bowen
    Zhang, Jing
    Dai, Yuchao
    Li, Aixuan
    Zhang, Tong
    PATTERN RECOGNITION, 2022, 123
  • [24] Residual Learning for Salient Object Detection
    Feng, Mengyang
    Lu, Huchuan
    Yu, Yizhou
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4696 - 4708
  • [25] Local to Global Feature Learning for Salient Object Detection
    Feng, Xuelu
    Zhou, Sanping
    Zhu, Zixin
    Wang, Le
    Hua, Gang
    PATTERN RECOGNITION LETTERS, 2022, 162 : 81 - 88
  • [26] A mix-supervised unified framework for salient object detection
    Fengwei Jia
    Jian Guan
    Shuhan Qi
    Huale Li
    Xuan Wang
    Applied Intelligence, 2020, 50 : 2945 - 2958
  • [27] A mix-supervised unified framework for salient object detection
    Jia, Fengwei
    Guan, Jian
    Qi, Shuhan
    Li, Huale
    Wang, Xuan
    APPLIED INTELLIGENCE, 2020, 50 (09) : 2945 - 2958
  • [28] Learning Salient Feature for Salient Object Detection Without Labels
    Li, Shuo
    Liu, Fang
    Jiao, Licheng
    Liu, Xu
    Chen, Puhua
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (02) : 1012 - 1025
  • [29] Weakly Supervised Salient Object Detection by Hierarchically Enhanced Scribbles
    Wang, Xiongying
    Al-Huda, Zaid
    Peng, Bo
    Tang, Xin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (02)
  • [30] Joint learning of foreground, background and edge for salient object detection
    Wu, Qin
    Zhu, Pengcheng
    Chai, Zhilei
    Guo, Guodong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 240