Advancing Real-World Stereoscopic Image Super-Resolution via Vision-Language Model

被引:0
|
作者
Zhang, Zhe [1 ,2 ]
Lei, Jianjun [1 ]
Peng, Bo [1 ]
Zhu, Jie [1 ]
Xu, Liying [1 ]
Huang, Qingming [3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ Commerce, Sch Informat Engn, Tianjin 300134, Peoples R China
[3] Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Stereo image processing; Degradation; Superresolution; Visualization; Image reconstruction; Training; Iterative methods; Solid modeling; Computational modeling; Cognition; Super-resolution; stereoscopic image; vision-language model;
D O I
10.1109/TIP.2025.3546470
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent years have witnessed the remarkable success of the vision-language model in various computer vision tasks. However, how to exploit the semantic language knowledge of the vision-language model to advance real-world stereoscopic image super-resolution remains a challenging problem. This paper proposes a vision-language model-based stereoscopic image super-resolution (VLM-SSR) method, in which the semantic language knowledge in CLIP is exploited to facilitate stereoscopic image SR in a training-free manner. Specifically, by designing visual prompts for CLIP to infer the region similarity, a prompt-guided information aggregation mechanism is presented to capture inter-view information among relevant regions between the left and right views. Besides, driven by the prior knowledge of CLIP, a cognition prior-driven iterative enhancing mechanism is presented to optimize fuzzy regions adaptively. Experimental results on four datasets verify the effectiveness of the proposed method.
引用
收藏
页码:2187 / 2197
页数:11
相关论文
共 50 条
  • [31] Learning Many-to-Many Mapping for Unpaired Real-World Image Super-Resolution and Downscaling
    Sun, Wanjie
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9874 - 9889
  • [32] Image Super-Resolution via Iterative Refinement
    Saharia, Chitwan
    Ho, Jonathan
    Chan, William
    Salimans, Tim
    Fleet, David J.
    Norouzi, Mohammad
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4713 - 4726
  • [33] Efficient super-resolution via image warping
    Chiang, MC
    Boult, TE
    IMAGE AND VISION COMPUTING, 2000, 18 (10) : 761 - 771
  • [34] A Unified Framework for Super-Resolution via Clean Image Prior
    Na, Songju
    Nam, Yoonchan
    Kang, Suk-Ju
    IEEE ACCESS, 2025, 13 : 48488 - 48501
  • [35] Criteria Comparative Learning for Real-Scene Image Super-Resolution
    Shi, Yukai
    Li, Hao
    Zhang, Sen
    Yang, Zhijing
    Wang, Xiao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8476 - 8485
  • [36] Stereoscopic Image Generation From Light Field With Disparity Scaling and Super-Resolution
    Yan, Tao
    Jiao, Jianbo
    Liu, Wenxi
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1827 - 1842
  • [37] Real-GDSR: Real-World Guided DSM Super-Resolution via Edge-Enhancing Residual Network
    Panangian, Daniel
    Bittner, Ksenia
    ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 185 - 192
  • [38] Light Field Image Super-Resolution via Mutual Attention Guidance
    Wang, Zijian
    Lu, Yao
    IEEE ACCESS, 2021, 9 : 129022 - 129031
  • [39] Image Super-Resolution via Adaptive Regularization Term of Compressed Sensing
    Liu, Yintao
    Ren, Chao
    Shao, Hongjuan
    Liu, Qirui
    Zhang, Yan
    IEEE ACCESS, 2024, 12 : 90418 - 90431
  • [40] Unsupervised real image super-resolution via knowledge distillation network
    Yuan, Nianzeng
    Sun, Bangyong
    Zheng, Xiangtao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 234