Time-Multiplexed Reservoir Computing with Quantum-Dot Lasers: Impact of Charge-Carrier Scattering Timescale

被引:0
作者
Dong, Huifang [1 ]
Jaurigue, Lina [1 ]
Luedge, Kathy [1 ]
机构
[1] Tech Univ Ilmenau, Inst Phys, Weimarer Str 25, D-98693 Ilmenau, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2025年
关键词
effective scattering rate; feedback delay; quantum dot laser; relaxation oscillation; reservoir computing; HUMAN ACTION RECOGNITION; OPTICAL FEEDBACK; DYNAMICS; CLASSIFICATION; PERFORMANCE; MEMRISTOR; PARALLEL; CHAOS;
D O I
10.1002/pssr.202400433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reservoir computing with optical devices offers an energy-efficient approach for time-series forecasting. Quantum dot lasers with feedback are modeled in this article to explore the extent to which increased complexity in the charge-carrier dynamics within the nanostructured semiconductor can enhance the prediction performance. By tuning the scattering interactions, the laser's dynamics and response time can be finely adjusted, allowing for a systematic investigation. It is found that both system response time and task requirements need to be considered to find optimal operation conditions. Further, lasers with pronounced relaxation oscillations outperform those with strongly damped dynamics, even if the underlying charge-carrier dynamics is more complex. This demonstrates that optimal reservoir computing performance relies not only on a high internal phase space dimension but also on the effective utilization of these dynamics through the output sampling process, quantum dot laser, reservoir computing, feedback delay, effective scattering rate, relaxation oscillation.
引用
收藏
页数:13
相关论文
共 100 条
  • [1] An organized view of reservoir computing: a perspective on theory and technology development
    Abdi, Gisya
    Mazur, Tomasz
    Szacilowski, Konrad
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (05)
  • [2] Abreu S., 2024, Rev. Phys, V12, P100093
  • [3] Electrocardiogram Classification Using Reservoir Computing With Logistic Regression
    Angel Escalona-Moran, Miguel
    Soriano, Miguel C.
    Fischer, Ingo
    Mirasso, Claudio R.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) : 892 - 898
  • [4] Human action recognition with a large-scale brain-inspired photonic computer
    Antonik, Piotr
    Marsal, Nicolas
    Brunner, Daniel
    Rontani, Damien
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (11) : 530 - 537
  • [5] Information processing using a single dynamical node as complex system
    Appeltant, L.
    Soriano, M. C.
    Van der Sande, G.
    Danckaert, J.
    Massar, S.
    Dambre, J.
    Schrauwen, B.
    Mirasso, C. R.
    Fischer, I.
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [6] DYNAMICS OF A CO2-LASER WITH DELAYED FEEDBACK - THE SHORT-DELAY REGIME
    ARECCHI, FT
    GIACOMELLI, G
    LAPUCCI, A
    MEUCCI, R
    [J]. PHYSICAL REVIEW A, 1991, 43 (09): : 4997 - 5004
  • [7] Comparison of Photonic Reservoir Computing Systems for Fiber Transmission Equalization
    Argyris, Apostolos
    Cantero, Javier
    Galletero, M.
    Pereda, Ernesto
    Mirasso, Claudio R.
    Fischer, Ingo
    Soriano, Miguel C.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2020, 26 (01)
  • [8] Design Strategies and Applications of Reservoir Computing: Recent Trends and Prospects
    Bai, Kang Jun
    Thiem, Clare
    Lombardi III, Jack
    Liang, Yibin
    Yi, Yang
    [J]. IEEE CIRCUITS AND SYSTEMS MAGAZINE, 2023, 23 (04) : 10 - 33
  • [9] Photonic multiplexing techniques for neuromorphic computing
    Bai, Yunping
    Xu, Xingyuan
    Tan, Mengxi
    Sun, Yang
    Li, Yang
    Wu, Jiayang
    Morandotti, Roberto
    Mitchell, Arnan
    Xu, Kun
    Moss, David J.
    [J]. NANOPHOTONICS, 2023, 12 (05) : 795 - 817
  • [10] Tutorial: Photonic neural networks in delay systems
    Brunner, D.
    Penkovsky, B.
    Marquez, B. A.
    Jacquot, M.
    Fischer, I.
    Larger, L.
    [J]. JOURNAL OF APPLIED PHYSICS, 2018, 124 (15)