Artificial intelligence artificial muscle of dielectric elastomers

被引:0
|
作者
Huang, Dongyang [1 ]
Ma, Jiaxuan [1 ]
Han, Yubing [2 ]
Xue, Chang [1 ]
Zhang, Mengying [2 ]
Wen, Weijia [3 ,4 ]
Sun, Sheng [1 ]
Wu, Jinbo [1 ,2 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
[2] Shenzhen MSU BIT Univ, Fac Mat Sci, Shenzhen 518172, Peoples R China
[3] HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen 518031, Peoples R China
[4] Hong Kong Univ Sci & Technol Guang Zhou, Thrust Adv Mat, Guang Zhou 511455, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial muscle; Artificial intelligence; Dielectric elastomer; Material database; Data mining; Natural language processing; SOFT ROBOT; ACTUATORS; NETWORKS; STRAIN; COMBINATORIAL; STRENGTH; DATABASE; DESIGN;
D O I
10.1016/j.matdes.2025.113691
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Artificial muscles (AMs), which encompass materials or devices capable of replicating the functions of natural muscles, have garnered significant attention in recent years, driven by the advent of various materials (advanced hydrogels, pneumatic AMs, dielectric elastomers, etc.) that exhibit exceptional properties and devices that demonstrate remarkable performance. The immense potential of AMs spans numerous industries and aspects of daily life, necessitating accelerated research efforts to meet the increasing demand. This article focuses on dielectric responsive elastomers, which are key materials within the field of AMs, highlighting advancements in theory, materials, and devices. To expedite the research and development of dielectric elastomer AM materials and beyond, we propose leveraging artificial intelligence tools to transform the artificial intelligence muscle research paradigm. Establishing an AM material database is highly valuable, as seemingly minor material data can be correlated with descriptors and target values via machine learning. Through material data mining integrating materials science and data science, we can predict potential breakthroughs in AM materials. A datadriven experimental research approach significantly reduces the number of experiments required for AM development, leading to cost savings and increased research efficiency.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Artificial Intelligence Applications in Cybersecurity
    Kabbas, Azzah
    Alharthi, Atheer
    Munshi, Asmaa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (02): : 120 - 124
  • [32] Artificial Intelligence and Antibiotic Discovery
    David, Liliana
    Brata, Anca Monica
    Mogosan, Cristina
    Pop, Cristina
    Czako, Zoltan
    Muresan, Lucian
    Ismaiel, Abdulrahman
    Dumitrascu, Dinu Iuliu
    Leucuta, Daniel Corneliu
    Stanculete, Mihaela Fadygas
    Iaru, Irina
    Popa, Stefan Lucian
    ANTIBIOTICS-BASEL, 2021, 10 (11):
  • [33] Explainable artificial intelligence in pathology
    Klauschen, Frederick
    Dippel, Jonas
    Keyl, Philipp
    Jurmeister, Philipp
    Bockmayr, Michael
    Mock, Andreas
    Buchstab, Oliver
    Alber, Maximilian
    Ruff, Lukas
    Montavon, Gregoire
    Mueller, Klaus-Robert
    PATHOLOGIE, 2024, 45 (02): : 133 - 139
  • [34] Artificial Intelligence for Emergency Management
    Freeman, Sean
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS II, 2020, 11413
  • [35] Artificial intelligence and atrial fibrillation
    Sehrawat, Ojasav
    Kashou, Anthony H.
    Noseworthy, Peter A.
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2022, 33 (08) : 1932 - 1943
  • [36] Artificial intelligence in pediatric surgery
    Tsai, Anthony Y.
    Carter, Stewart R.
    Greene, Alicia C.
    SEMINARS IN PEDIATRIC SURGERY, 2024, 33 (01)
  • [37] Artificial intelligence and machine learning
    Kuehl, Niklas
    Schemmer, Max
    Goutier, Marc
    Satzger, Gerhard
    ELECTRONIC MARKETS, 2022, 32 (04) : 2235 - 2244
  • [38] Inventing Artificial Intelligence in Ethiopia
    Blackwell, Alan F.
    Damena, Addisu
    Tegegne, Tesfa
    INTERDISCIPLINARY SCIENCE REVIEWS, 2021, 46 (03) : 363 - 385
  • [39] Artificial Intelligence in Gastrointestinal Endoscopy
    Labaki, Chris
    Uche-Anya, Eugenia N.
    Berzin, Tyler M.
    GASTROENTEROLOGY CLINICS OF NORTH AMERICA, 2024, 53 (04) : 773 - 786
  • [40] Artificial intelligence in glomerular diseases
    Schena, Francesco P.
    Magistroni, Riccardo
    Narducci, Fedelucio
    Abbrescia, Daniela, I
    Anelli, Vito W.
    Di Noia, Tommaso
    PEDIATRIC NEPHROLOGY, 2022, 37 (11) : 2533 - 2545