Existence of Solutions for a Coupled System of Ψ-Caputo Fractional Differential Equations With Integral Boundary Conditions

被引:2
作者
Poovarasan, R. [1 ]
Govindaraj, V. [1 ]
机构
[1] Natl Inst Technol Puducherry, Dept Math, Karaikal, India
关键词
coupled system; fractional boundary value problem; integral boundary condition; psi-Caputo derivative; RESPECT;
D O I
10.1002/mma.10810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we examine a system of fractional differential equations involving nonlinear terms that depend on unknown functions and their fractional derivatives. We propose coupled nonlocal boundary conditions with integral constraints, introducing a novel problem within fractional calculus and nonlinear dynamics. Our main contributions include proving the existence of solutions obtained via Leray-Schauder's alternative and establishing uniqueness via the contraction mapping principle. These findings are further supported by examples that showcase the system's mathematical properties and behavior.
引用
收藏
页码:9456 / 9468
页数:13
相关论文
共 26 条
[11]  
Gudade S. K., 2021, J MATH COMPUTER SCI, V12, pArticle
[12]   Existence and uniqueness results for fractional boundary value problems with multiple orders of fractional derivatives and integrals [J].
Kherraz, Tahar ;
Benbachir, Maamar ;
Lakrib, Mustapha ;
Samei, Mohammad Esmael ;
Kaabar, Mohammed K. A. ;
Bhanotar, Shailesh A. .
CHAOS SOLITONS & FRACTALS, 2023, 166
[13]  
Kilbas A. A., 2006, Theory and Applications of Fractional Differential Equations, V204, DOI DOI 10.1016/S0304-0208(06)80001-0
[14]  
Klafter J., 2012, Fractional Dynamics: Recent Advances
[15]   Recent history of fractional calculus [J].
Machado, J. Tenreiro ;
Kiryakova, Virginia ;
Mainardi, Francesco .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (03) :1140-1153
[16]   Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives [J].
Odibat, Zaid ;
Baleanu, Dumitru .
APPLIED NUMERICAL MATHEMATICS, 2020, 156 :94-105
[17]  
Picone M., 1908, ANN SCUOLA NORM SUP, V10, P1
[18]  
Podlubny I, 1999, Fractional Differential Equations, DOI DOI 10.12691/AJMA-1-1-3
[19]   The existence, uniqueness, and stability analyses of the generalized Caputo-type fractional boundary value problems [J].
Poovarasan, R. ;
Kumar, Pushpendra ;
Nisar, Kottakkaran Sooppy ;
Govindaraj, V. .
AIMS MATHEMATICS, 2023, 8 (07) :16757-16772
[20]  
Sabatier JATMJ, 2007, Advances in Fractional Calculus, V4