A Guided-to-Autonomous Policy Learning method of Deep Reinforcement Learning in Path Planning

被引:0
|
作者
Zhao, Wang [1 ]
Zhang, Ye [1 ]
Li, Haoyu [1 ]
机构
[1] Northwestern Polytech Univ, Sch Astronaut, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
path planning; Deep Reinforcement Learning; training efficiency; composite optimization; Guided-to-Autonomous Policy Learning;
D O I
10.1109/ICCA62789.2024.10591821
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces a Guided-to-Autonomous Policy Learning (GAPL) method that improves the training efficiency and composite optimization of Deep Reinforcement Learning (DRL) in path planning. Under this method, firstly, we introduce the concept of guiding rewards as a reward enhancement mechanism, which, based on Rapidly-exploring Random Trees (RRT) and Artificial Potential Field (APF) algorithm, effectively addresses the challenge of training efficiency. We then propose the Guided-to-Autonomous Reward Transition (GART) model to solve the combined challenges of balancing training efficiency with composite optimization problems, which lies in the evolutionary refinement of the reward structure, initially dominated by guiding rewards, transiting progressively toward a focus on rewards that emphasize composite optimization, specifically minimizing the distance and time to the end point. Simulated experiments in static obstacle settings and mixed dynamic-static obstacle environments demonstrate that: 1) guiding rewards play a significant role in enhancing training efficiency; 2) the GAPL method yields superior composite optimization outcomes for path planning compared to conventional methods, and it effectively addresses the issue of training efficiency in conventional DRL method.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 50 条
  • [31] Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles
    Aradi, Szilard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 740 - 759
  • [32] An End-to-End Deep Reinforcement Learning Method for UAV Autonomous Motion Planning
    Cui, Yangjie
    Dong, Xin
    Li, Daochun
    Tu, Zhan
    2022 7TH INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION ENGINEERING, ICRAE, 2022, : 100 - 104
  • [33] Reinforcement Learning Path Planning Method with Error Estimation
    Zhang, Feihu
    Wang, Can
    Cheng, Chensheng
    Yang, Dianyu
    Pan, Guang
    ENERGIES, 2022, 15 (01)
  • [34] UCAV Path Planning Algorithm Based on Deep Reinforcement Learning
    Zheng, Kaiyuan
    Gao, Jingpeng
    Shen, Liangxi
    IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 702 - 714
  • [35] Deep reinforcement learning for indoor mobile robot path planning
    Gao, Junli
    Ye, Weijie
    Guo, Jing
    Li, Zhongjuan
    Sensors (Switzerland), 2020, 20 (19): : 1 - 15
  • [36] Grid Path Planning with Deep Reinforcement Learning: Preliminary Results
    Panov, Aleksandr, I
    Yakovlev, Konstantin S.
    Suvorov, Roman
    8TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, BICA 2017 (EIGHTH ANNUAL MEETING OF THE BICA SOCIETY), 2018, 123 : 347 - 353
  • [37] Application of Deep Reinforcement Learning in Mobile Robot Path Planning
    Xin, Jing
    Zhao, Huan
    Liu, Ding
    Li, Minqi
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 7112 - 7116
  • [38] Research on path planning of robot based on deep reinforcement learning
    Liu, Feng
    Chen, Chang
    Li, Zhihua
    Guan, Zhi-Hong
    Wang, Hua O.
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3730 - 3734
  • [39] A Deep Reinforcement Learning Based Approach for AGVs Path Planning
    Guo, Xinde
    Ren, Zhigang
    Wu, Zongze
    Lai, Jialun
    Zeng, Deyu
    Xie, Shengli
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6833 - 6838
  • [40] Dynamic Path Planning for Mobile Robots with Deep Reinforcement Learning
    Yang, Laiyi
    Bi, Jing
    Yuan, Haitao
    IFAC PAPERSONLINE, 2022, 55 (11): : 19 - 24