A Guided-to-Autonomous Policy Learning method of Deep Reinforcement Learning in Path Planning

被引:0
|
作者
Zhao, Wang [1 ]
Zhang, Ye [1 ]
Li, Haoyu [1 ]
机构
[1] Northwestern Polytech Univ, Sch Astronaut, Xian, Peoples R China
来源
2024 IEEE 18TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION, ICCA 2024 | 2024年
基金
中国国家自然科学基金;
关键词
path planning; Deep Reinforcement Learning; training efficiency; composite optimization; Guided-to-Autonomous Policy Learning;
D O I
10.1109/ICCA62789.2024.10591821
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study introduces a Guided-to-Autonomous Policy Learning (GAPL) method that improves the training efficiency and composite optimization of Deep Reinforcement Learning (DRL) in path planning. Under this method, firstly, we introduce the concept of guiding rewards as a reward enhancement mechanism, which, based on Rapidly-exploring Random Trees (RRT) and Artificial Potential Field (APF) algorithm, effectively addresses the challenge of training efficiency. We then propose the Guided-to-Autonomous Reward Transition (GART) model to solve the combined challenges of balancing training efficiency with composite optimization problems, which lies in the evolutionary refinement of the reward structure, initially dominated by guiding rewards, transiting progressively toward a focus on rewards that emphasize composite optimization, specifically minimizing the distance and time to the end point. Simulated experiments in static obstacle settings and mixed dynamic-static obstacle environments demonstrate that: 1) guiding rewards play a significant role in enhancing training efficiency; 2) the GAPL method yields superior composite optimization outcomes for path planning compared to conventional methods, and it effectively addresses the issue of training efficiency in conventional DRL method.
引用
收藏
页码:665 / 672
页数:8
相关论文
共 50 条
  • [31] An indoor blind area-oriented autonomous robotic path planning approach using deep reinforcement learning
    Zhou, Yuting
    Yang, Junchao
    Guo, Zhiwei
    Shen, Yu
    Yu, Keping
    Lin, Jerry Chun-Wei
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 254
  • [32] UAV online path planning technology based on deep reinforcement learning
    Fan, Jiaxuan
    Wang, Zhenya
    Ren, Jinlei
    Lu, Ying
    Liu, Yiheng
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 5382 - 5386
  • [33] An Improved Deep Reinforcement Learning Algorithm for Path Planning in Unmanned Driving
    Yang, Kai
    Liu, Li
    IEEE ACCESS, 2024, 12 : 67935 - 67944
  • [34] A Multiagent Deep Reinforcement Learning Approach for Path Planning in Autonomous Surface Vehicles: The Ypacarai Lake Patrolling Case
    Luis, Samuel Yanes
    Reina, Daniel Gutierrez
    Marin, Sergio L. Toral
    IEEE ACCESS, 2021, 9 : 17084 - 17099
  • [35] Path Following for Autonomous Mobile Robots with Deep Reinforcement Learning
    Cao, Yu
    Ni, Kan
    Kawaguchi, Takahiro
    Hashimoto, Seiji
    SENSORS, 2024, 24 (02)
  • [36] Autonomous Vehicle Driving Path Control with Deep Reinforcement Learning
    Tiong, Teckchai
    Saad, Ismail
    Teo, Kenneth Tze Kin
    bin Lago, Herwansyah
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 84 - 92
  • [37] Dynamic Scene Path Planning of UAVs Based on Deep Reinforcement Learning
    Tang, Jin
    Liang, Yangang
    Li, Kebo
    DRONES, 2024, 8 (02)
  • [38] AUV path planning based on improved IFDS and deep reinforcement learning
    Fan, Yiqun
    Li, Hongna
    Xie, Jiaqi
    Zhou, Yunfu
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2024, 21 (06):
  • [39] Path Planning of Autonomous Mobile Robot in Comprehensive Unknown Environment Using Deep Reinforcement Learning
    Bai, Zekun
    Pang, Hui
    He, Zhaonian
    Zhao, Bin
    Wang, Tong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22153 - 22166
  • [40] An End-to-End Reinforcement Learning Method for Automated Guided Vehicle Path Planning
    Sun Yu
    Li Haisheng
    INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND ROBOTICS 2020, 2020, 11574