UNIQUENESS RESULTS BASED ON DELTA FRACTIONAL OPERATORS FOR CERTAIN BOUNDARY VALUE PROBLEMS

被引:1
作者
Mohammed, Pshtiwan Othman [1 ]
Agarwal, Ravi P. [2 ]
Baleanu, Dumitru [3 ]
Abdeljawad, Thabet [4 ,5 ,6 ]
Yousif, Majeed A. [7 ]
Abdelwahed, Mohamed [8 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaymaniyah 46001, Iraq
[2] Florida Inst Technol, Dept Math & Syst Engn, Melbourne, FL 32901 USA
[3] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[4] China Med Univ, Dept Med Res, Taichung 40402, Taiwan
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Hawally, Kuwait
[6] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Garankuwa, Medusa, South Africa
[7] Univ Zakho, Coll Educ, Dept Math, Zakho 42002, Iraq
[8] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Riemann-Liouville Operators; Green's Functions; Fractional Boundary Value Problems; Existence and Uniqueness Solution;
D O I
10.1142/S0218348X25400419
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper primarily lies in presenting existence and uniqueness analysis of boundary fractional difference equations of a special Riemann-Liouville operators classes. To this end, we first develop Green's function to the corresponding fractional boundary value problems and provide boundary conditions to find the constants. Then we study the existence of solutions and we examine the bounded of their solutions. Eventually, two numerical examples are given to demonstrate the efficiency and uniqueness behavior of the boundary value problem. Furthermore, such fractional problems can typically be converted to a direct fractional problem with certain boundary or initial conditions in transport in porous media.
引用
收藏
页数:10
相关论文
共 37 条
  • [1] Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel
    Abdeljawad, Thabet
    Baleanu, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 106 - 110
  • [2] On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions
    Abdo, Mohammed S.
    Abdeljawad, Thabet
    Ali, Saeed M.
    Shah, Kamal
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [3] Ahrendt K., 2012, Commun. Appl. Anal., V16, P317
  • [4] Approximation of sequential fractional systems of Liouville-Caputo type by discrete delta difference operators
    Almusawa, Musawa Yahya
    Mohammed, Pshtiwan Othman
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 176
  • [5] Atici F. M., 2007, INT J DIFFERENCE EQU, V2, P165
  • [6] Atici FM, 2009, P AM MATH SOC, V137, P981
  • [7] On convexity analysis for discrete delta Riemann-Liouville fractional differences analytically and numerically
    Baleanu, Dumitru
    Mohammed, Pshtiwan Othman
    Srivastava, Hari Mohan
    Al-Sarairah, Eman
    Abdeljawad, Thabet
    Hamed, Y. S.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [8] Stability analysis of Caputo-like discrete fractional systems
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Bai, Yun-Ru
    Chen, Fu-Lai
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 520 - 530
  • [9] Brackins A., 2014, Boundary value problems of nabla fractional difference equations
  • [10] Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations
    Chen, Churong
    Bohner, Martin
    Jia, Baoguo
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (03) : 857 - 869