On the Ramsey Number for Theta Graphs Versus the Complete Graph of Order Six

被引:0
作者
Baniabedalruhman, A. [1 ]
Jaradat, M. M. M. [2 ]
Bataineh, M. S. [1 ,3 ]
Jaradat, A. M. M. [4 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
[2] Qatar Univ, Dept Math Stat & Phys, Doha, Qatar
[3] Univ Sharjah, Dept Math, Sharjah, U Arab Emirates
[4] Princess Sumaya Univ Technol, Basic Sci Dept, Amman, Jordan
关键词
CYCLE; R(THETA(N); R(C-M; K-7);
D O I
10.1155/2024/2416730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Ramsey number rG,H is the smallest positive integer n such that any graph W of order n contains G as a subgraph or its complement contains H as a subgraph. In this paper, we find the exact value for the Ramsey number r theta n,K6;k >= 6; n >= 6, where theta n is a theta graph of order n and K6 is the complete graph of order 6.
引用
收藏
页数:6
相关论文
共 29 条
[1]   Ramsey numbers of partial order graphs (comparability graphs) and implications in ring theory [J].
Badawi, Ayman ;
Rissner, Roswitha .
OPEN MATHEMATICS, 2020, 18 :1645-1657
[2]   THE CYCLE-COMPLETE GRAPH RAMSEY NUMBERS R(Cn, K8), FOR 10 ≤ n ≤ 15 [J].
Baniabedalruhman, A. .
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 16 (04) :703-718
[3]   THE THETA-COMPLETE GRAPH RAMSEY NUMBER R(θn, K7); n = 7; n ≥ 14 [J].
Baniabedalruhman, A. .
JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (03) :517-526
[4]  
Baniabedalruhman A., 2010, Journal of Combinatorics, Information System Sciences, V35, P293
[5]   EDGE MAXIMAL C2k+1-EDGE DISJOINT FREE GRAPHS [J].
Bataineh, M. S. A. ;
Jaradat, M. M. M. .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (02) :271-278
[6]   Graph classes and Ramsey numbers [J].
Belmonte, Remy ;
Heggernes, Pinar ;
van 't Hof, Pim ;
Rafiey, Arash ;
Saei, Reza .
DISCRETE APPLIED MATHEMATICS, 2014, 173 :16-27
[7]  
Bollobas B., 2000, AUSTRALAS J COMB, V22, P63
[8]  
Bolze R., 1981, The Theory and Applications of Graphs, P109
[9]  
Boza L., 2010, P 7 C DISCR MATH ALG
[10]   The Ramsey numbers R(Cm, K7) and R(C7, K8) [J].
Chen, Yaojun ;
Cheng, T. C. Edwin ;
Zhang, Yunqing .
EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) :1337-1352