Latest developments in the synthesis of metal-organic frameworks and their hybrids for hydrogen storage

被引:0
|
作者
Jimenez-Lopez, Laura [1 ]
Morales Ospino, Rafael [1 ]
de Araujo, Leandro Goulart [1 ]
Celzard, Alain [1 ,2 ]
Fierro, Vanessa [1 ]
机构
[1] Univ Lorraine, CNRS, IJL, F-88000 Epinal, France
[2] Inst Univ France IUF, F-75231 Paris, France
关键词
ROOM-TEMPERATURE SYNTHESIS; THERMAL-CONDUCTIVITY; ACTIVATED CARBON; MECHANOCHEMICAL SYNTHESIS; ELECTROCHEMICAL SYNTHESIS; ADSORPTIVE SEPARATION; MICROWAVE SYNTHESIS; PD NANOPARTICLES; POROUS MATERIALS; FACILE SYNTHESIS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) are promising materials for hydrogen (H2) storage due to their versatile structures, high surface areas and substantial pore volumes. This paper provides a comprehensive review of MOF synthesis and characterization, as well as their practical applications for H2 storage. We explore various MOF synthesis techniques, highlighting their impact on the nanopore structure and functionality. Special emphasis is placed on strategies for enhancing H2 storage capacities by increasing specific surface areas, optimizing pore size distributions, and facilitating H2 release by improving thermal conductivity. Key advances in MOF-based hybrids, such as MOFs combined with carbonaceous materials, metals or other inorganic materials, are discussed. This review also addresses the effectiveness of linker functionalization and the introduction of unsaturated metal centers to optimize H2 storage under ambient conditions. We conclude that the development of competitive MOF-based hybrids, particularly those that incorporate carbons, offers significant potential for improving H2 storage and recovery, enhancing thermal stability and increasing thermal conductivity. These advancements are in line with the US Department of Energy (DOE) specifications and pave the way for future research into the optimization of MOFs for practical H2 storage applications.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Is catenation beneficial for hydrogen storage in metal-organic frameworks?
    Ryan, Patrick
    Broadbelt, Linda J.
    Snurr, Randall Q.
    CHEMICAL COMMUNICATIONS, 2008, (35) : 4132 - 4134
  • [32] Metal-Organic Frameworks (MOFs) as Hydrogen Storage Materials
    Jia Chao
    Yuan Xianxia
    Ma Zifeng
    PROGRESS IN CHEMISTRY, 2009, 21 (09) : 1954 - 1962
  • [33] Metal-organic Frameworks for Hydrogen Storage: Theoretical Prospective
    Heikal, Lobna A.
    Hassan, Walid M., I
    Hamouda, Asmaa S.
    Mohamed, Hamdy F. M.
    El-shazly, Ahmed H.
    Ibrahim, Medhat A.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2021, 64 (03): : 1133 - 1140
  • [34] Metal-organic frameworks - New materials for hydrogen storage
    Isaeva, V. I.
    Kustov, L. M.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2007, 77 (04) : 721 - 739
  • [35] Hydrogen storage in functionalized metal-organic frameworks.
    Yaghi, OM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U682 - U682
  • [36] Highly interpenetrated metal-organic frameworks for hydrogen storage
    Kesanli, B
    Cui, Y
    Smith, MR
    Bittner, EW
    Bockrath, BC
    Lin, WB
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (01) : 72 - 75
  • [37] Improved designs of metal-organic frameworks for hydrogen storage
    Han, Sang Soo
    Deng, Wei-Qiao
    Goddard, William A., III
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (33) : 6289 - 6292
  • [38] The current status of hydrogen storage in metal-organic frameworks
    Zhao, Dan
    Yuan, Daqiang
    Zhou, Hong-Cai
    ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (02) : 222 - 235
  • [39] Catalytic hydrogen storage in metal-organic frameworks via hydrogen spillover
    Cheng, Peifu
    Hu, Yun Hang
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [40] Hydrogen storage in metal-organic and covalent-organic frameworks by spillover
    Li, Yingwei
    Yang, Ralph T.
    AICHE JOURNAL, 2008, 54 (01) : 269 - 279