A graph neural architecture search approach for identifying bots in social media

被引:0
|
作者
Tzoumanekas, Georgios [1 ]
Chatzianastasis, Michail [2 ]
Ilias, Loukas [1 ]
Kiokes, George [3 ]
Psarras, John [1 ]
Askounis, Dimitris [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Decis Support Syst Lab, Athens, Greece
[2] Inst Polytech Paris, Ecole Polytech, DaSciM, LIX, Palaiseau, France
[3] Merchant Marine Acad Aspropyrgos, Sch Engn, Div Elect Elect & Informat, Lab Elect Machines & Installat, Aspropyrgos 19300, Greece
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2024年 / 7卷
关键词
bot detection; graph neural networks; neural architecture search; propagation; transformation; social media platform X;
D O I
10.3389/frai.2024.1509179
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Heterogeneous Graph Neural Architecture Search
    Gao, Yang
    Zhang, Peng
    Li, Zhao
    Zhou, Chuan
    Liu, Yongchao
    Hu, Yue
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1066 - 1071
  • [2] Graph neural architecture search: A survey
    Oloulade, Babatounde Moctard
    Gao, Jianliang
    Chen, Jiamin
    Lyu, Tengfei
    Al-Sabri, Raeed
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (04) : 692 - 708
  • [3] GQNAS: Graph Q Network for Neural Architecture Search
    Qin, Yijian
    Wang, Xin
    Cui, Peng
    Zhu, Wenwu
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1288 - 1293
  • [4] Evolving graph convolutional networks for neural architecture search
    Kyriakides, George
    Margaritis, Konstantinos
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02) : 899 - 909
  • [5] Evolving graph convolutional networks for neural architecture search
    George Kyriakides
    Konstantinos Margaritis
    Neural Computing and Applications, 2022, 34 : 899 - 909
  • [6] GraphPAS: Parallel Architecture Search for Graph Neural Networks
    Chen, Jiamin
    Gao, Jianliang
    Chen, Yibo
    Oloulade, Moctard Babatounde
    Lyu, Tengfei
    Li, Zhao
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2182 - 2186
  • [7] Auto-GNN: Neural architecture search of graph neural networks
    Zhou, Kaixiong
    Huang, Xiao
    Song, Qingquan
    Chen, Rui
    Hu, Xia
    FRONTIERS IN BIG DATA, 2022, 5
  • [8] A surrogate evolutionary neural architecture search algorithm for graph neural networks
    Liu, Yang
    Liu, Jing
    APPLIED SOFT COMPUTING, 2023, 144
  • [9] Neural Architecture Search for GNN-Based Graph Classification
    Wei, Lanning
    Zhao, Huan
    He, Zhiqiang
    Yao, Quanming
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (01)
  • [10] Graph Neural Network Architecture Search for Molecular Property Prediction
    Jiang, Shengli
    Balaprakash, Prasanna
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1346 - 1353