A First-Passage Model of Intravitreal Drug Delivery and Residence Time-Influence of Ocular Geometry, Individual Variability, and Injection Location

被引:0
作者
Lamirande, Patricia [1 ]
Gaffney, Eamonn A. [1 ]
Gertz, Michael [2 ]
Maini, Philip K. [1 ]
Crawshaw, Jessica R. [1 ,3 ]
Caruso, Antonello [2 ]
机构
[1] Univ Oxford, Wolfson Ctr Math Biol, Math Inst, Andrew Wiles Bldg, Oxford, England
[2] Roche Innovat Ctr Basel, Pharmaceut Sci, Roche Pharm Res & Early Dev, Basel, Switzerland
[3] Queensland Univ Technol, Sch Math Sci, Brisbane, Australia
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
diffusion; intravitreal drug delivery; first-passage time; large molecule pharmacokinetics; interspecies translation; ENDOTHELIAL GROWTH-FACTOR; IN-VIVO BIOMETRY; INTRAOCULAR PHARMACOKINETICS; SCHEMATIC EYE; MOUSE EYE; SENSITIVITY-ANALYSIS; VITREOUS-HUMOR; SURFACE-AREA; RANIBIZUMAB; RABBIT;
D O I
10.1167/iovs.65.12.21
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PURPOSE . Standard of care for various retinal diseases involves recurrent intravitreal injections. This motivates mathematical modeling efforts to identify influential factors for ocular drug residence time, aiming to minimize administration frequency. We sought to describe the vitreal diffusion of therapeutics in nonclinical species frequently used during drug development assessments. In human eyes, we investigated the impact of variability in vitreous cavity size and eccentricity, and in injection location, on drug disposition. METHODS . Using a first-passage time approach, we modeled the transport-controlled distribution of two standard therapeutic protein formats (Fab and IgG) and elimination through anterior and posterior pathways. Anatomical three-dimensional geometries of mouse, rat, rabbit, cynomolgus monkey, and human eyes were constructed using ocular images and biometry datasets. A scaling relationship was derived for comparison with experimental ocular half-lives. RESULTS . Model simulations revealed a dependence of residence time on ocular size and injection location. Delivery to the posterior vitreous resulted in increased vitreal halflife and retinal permeation. Interindividual variability in human eyes had a significant influence on residence time (half-life range of 5-7 days), showing a strong correlation to axial length and vitreal volume. Anterior exit was the predominant route of drug elimination. Contribution of the posterior pathway displayed a 3% difference between protein formats but varied between species (10%-30%). CONCLUSIONS . The modeling results suggest that experimental variability in ocular half-life is partially attributed to anatomical differences and injection site location. Simulations further suggest a potential role of the posterior pathway permeability in determining species differences in ocular pharmacokinetics.
引用
收藏
页数:15
相关论文
共 125 条
[1]   Intraocular Pharmacokinetics of Ranibizumab in Vitrectomized Versus Nonvitrectomized Eyes [J].
Ahn, Seong Joon ;
Ahn, Jeeyun ;
Park, Sunyoung ;
Kim, Hyuncheol ;
Hwang, Duck Jin ;
Park, Ji Hyun ;
Park, Ji Yeon ;
Chung, Jae Yong ;
Park, Kyu Hyung ;
Woo, Se Joon .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (01) :567-573
[2]   Evolving guidelines for intravitreous injections [J].
Aiello, LP ;
Brucker, AJ ;
Chang, S ;
Cunningham, ET ;
D'Amico, DJ ;
Flynn, HW ;
Grillone, LR ;
Hutcherson, S ;
Liebmann, JM ;
O'Brien, TP ;
Scott, IU ;
Spaide, RF ;
Ta, C .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2004, 24 (05) :S3-S19
[3]   The effects of intravitreous bevacizumab on retinal neovascular membrane and normal capillaries in rabbits [J].
Ameri, Hossein ;
Chader, Gerald J. ;
Kim, June-Gone ;
Sadda, SriniVas R. ;
Rao, Narsing A. ;
Humayun, Mark S. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2007, 48 (12) :5708-5715
[4]  
[Anonymous], COMSOL Multiphysics, V5.3
[5]   THE LOSS OF FLUORESCEIN, FLUORESCEIN GLUCURONIDE AND FLUORESCEIN ISOTHIOCYANATE DEXTRAN FROM THE VITREOUS BY THE ANTERIOR AND RETINAL PATHWAYS [J].
ARAIE, M ;
MAURICE, DM .
EXPERIMENTAL EYE RESEARCH, 1991, 52 (01) :27-39
[6]   Eye shape in emmetropia and myopia [J].
Atchison, DA ;
Jones, CE ;
Schmid, KL ;
Pritchard, N ;
Pope, JM ;
Strugnell, WE ;
Riley, RA .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2004, 45 (10) :3380-3386
[7]  
Atsumi I., 2013, Animal Eye Research, V32, P35, DOI DOI 10.11254/JSCVO.32.35
[8]   SYSTEMIC PHARMACOKINETICS AND PHARMACODYNAMICS OF INTRAVITREAL AFLIBERCEPT, BEVACIZUMAB, AND RANIBIZUMAB [J].
Avery, Robert L. ;
Castellarin, Alessandro A. ;
Steinle, Nathan C. ;
Dhoot, Dilsher S. ;
Pieramici, Dante J. ;
See, Robert ;
Couvillion, Stephen ;
Nasir, Ma'an A. ;
Rabena, Melvin D. ;
Maia, Mauricio ;
Van Everen, Sherri ;
Le, Kha ;
Hanley, William D. .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2017, 37 (10) :1847-1858
[9]   In Vivo Measurement of the Human Vitreous Chamber Volume Using Computed Tomography Imaging of 100 Eyes [J].
Azhdam, Ariel M. ;
Goldberg, Robert A. ;
Ugradar, Shoaib .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (01)
[10]   Understanding the retinal basis of vision across species [J].
Baden, Tom ;
Euler, Thomas ;
Berens, Philipp .
NATURE REVIEWS NEUROSCIENCE, 2020, 21 (01) :5-20