Lithium battery capacity prediction method based on sparrow algorithm to optimize convolutional neural network and bidirectional long short-term memory network model

被引:0
作者
Yang, Weiman [1 ]
Du, Jie [1 ]
Ye, Hao [1 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou, Gansu, Peoples R China
来源
2024 6TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES 2024 | 2024年
关键词
BiLSTM; Battery Capacity Prediction; CNN; SSA;
D O I
10.1109/AEEES61147.2024.10544821
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To address the challenge of inevitable battery capacity degradation over extended usage, we have explored and applied a neural network that combines convolutional neural network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) for battery capacity prediction. In this model, CNN helps mitigate the fluctuations in prediction results by extracting data features, while BiLSTM predicts the battery capacity's aging trend. We optimized the parameters of the CNN-BiLSTM model using the Sparrow Search Algorithm (SSA) and evaluated the performance of the SSA-CNN-BiLSTM network using the leave-one-out method (LOOCV). The experiments demonstrate that the model can provide accurate predictions of battery capacity, particularly in scenarios with a large sample size and an extended time frame.
引用
收藏
页码:484 / 489
页数:6
相关论文
共 22 条
[1]  
[Anonymous], Journal of Power Sources
[2]  
Chaoui H, 2016, IEEE Transactions on Control Systems Technology, P1
[3]  
Chen Z, 2020, IEEE Access, P8
[4]  
Ghasempour, 2023, IEEE KANS POW EN C I
[5]   A review on the key issues of the lithium ion battery degradation among the whole life cycle [J].
Han, Xuebing ;
Lu, Languang ;
Zheng, Yuejiu ;
Feng, Xuning ;
Li, Zhe ;
Li, Jianqiu ;
Ouyang, Minggao .
ETRANSPORTATION, 2019, 1
[6]  
Khalik Z, 2020, ANN AM CONTR C
[7]  
Li J, Journal of Power Sources, P456
[8]   Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter [J].
Li, Weihan ;
Fan, Yue ;
Ringbeck, Florian ;
Jost, Dominik ;
Han, Xuebing ;
Ouyang, Minggao ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2020, 476
[9]   Modified Gaussian Process Regression Models for Cyclic Capacity Prediction of Lithium-Ion Batteries [J].
Liu, Kailong ;
Hu, Xiaosong ;
Wei, Zhongbao ;
Li, Yi ;
Jiang, Yan .
IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2019, 5 (04) :1225-1236
[10]  
Peng Q, 2012, P 2012 2 INT C EL IN, V02