Dual-decoder data decoupling training for semi-supervised medical image segmentation

被引:2
作者
Wang, Bing [1 ,2 ]
Huang, Taifeng [1 ]
Yang, Shuo [1 ]
Yang, Ying [3 ]
Zhai, Junhai [1 ,2 ]
Zhang, Xin [4 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China
[2] Hebei Univ, Hebei Key Lab Machine Learning & Computat Intellig, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China
[3] Hebei Univ, Hebei Univ Affiliated Hosp, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China
[4] Hebei Univ, Coll Elect Informat Engn, Qiyi Rd 2666, Baoding 071000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Semi-supervised learning; Medical image segmentation; Pseudo labeling; Consistency regularization; Data decoupling;
D O I
10.1016/j.bspc.2024.106984
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Semi-supervised learning (SSL) is an effective strategy for extracting useful information from unlabeled datasets to improve deep model performance. SSL is widely used in medical image segmentation to alleviate the burden of expensive pixel-level labeling. Most existing SSL-based medical image segmentation methods use all unlabeled data equally to update the model via unsupervised loss. However, not all unlabeled data are applicable to the same model training process due to differences in data quality and importance. In this study, we propose a dual-decoder data decoupling training-based semi-supervised medical image segmentation network (DD-Net) that enables the model to focus on challenging regions. DD-Net decouples the prediction of unlabeled data into data with different functions based on the degree of confidence matching from two student decoders and adopts different optimization strategies for different functional data. Specifically, for high- reliability part, we employ cross pseudo supervision learning to improve the reliability of model prediction. For divergent predictions, we propose mutual matching learning to guide the model to learn richer information in high uncertainty data by assigning high entropy to the prediction data. For low-confidence prediction, we employ reinforcement consistency learning to enhance the context representations of the model to effectively extract important details, such as edges and contours, from unlabeled data. Experiments on four medical challenging image datasets demonstrate that our method outperforms existing state-of-the-art methods. The code is available at https://github.com/TaifengHuang/DD-Net.
引用
收藏
页数:10
相关论文
共 46 条
[1]   A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications [J].
Alzubaidi, Laith ;
Bai, Jinshuai ;
Al-Sabaawi, Aiman ;
Santamaria, Jose ;
Albahri, A. S. ;
Al-dabbagh, Bashar Sami Nayyef ;
Fadhel, Mohammed. A. A. ;
Manoufali, Mohamed ;
Zhang, Jinglan ;
Al-Timemy, Ali. H. H. ;
Duan, Ye ;
Abdullah, Amjed ;
Farhan, Laith ;
Lu, Yi ;
Gupta, Ashish ;
Albu, Felix ;
Abbosh, Amin ;
Gu, Yuantong .
JOURNAL OF BIG DATA, 2023, 10 (01)
[2]   Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning [J].
Arazo, Eric ;
Ortego, Diego ;
Albert, Paul ;
O'Connor, Noel E. ;
McGuinness, Kevin .
2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
[3]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[4]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[5]  
Cascante-Bonilla P, 2021, AAAI CONF ARTIF INTE, V35, P6912
[6]   Decoupled Consistency for Semi-supervised Medical Image Segmentation [J].
Chen, Faquan ;
Fei, Jingjing ;
Chen, Yaqi ;
Huang, Chenxi .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 :551-561
[7]  
Chen J., 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[8]   Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [J].
Chen, Xiaokang ;
Yuan, Yuhui ;
Zeng, Gang ;
Wang, Jingdong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2613-2622
[9]   Is Segmentation Uncertainty Useful? [J].
Czolbe, Steffen ;
Arnavaz, Kasra ;
Krause, Oswin ;
Feragen, Aasa .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021, 2021, 12729 :715-726
[10]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, DOI 10.48550/ARXIV.2010.11929]