Genome-Wide Identification and Comprehensive Analysis of the GARP Transcription Factor Superfamily in Populus deltoides

被引:0
|
作者
Yang, Qin [1 ,2 ]
He, Zhengquan [1 ]
Zheng, Chenjia [2 ,3 ]
He, Ruoyu [1 ,2 ]
Chen, Yu [4 ]
Zhuo, Renying [2 ]
Qiu, Wenmin [2 ]
机构
[1] China Three Gorges Univ, Biotechnol Res Ctr, Key Lab Three Gorges Reg Plant Genet & Germplasm E, Yichang 443002, Peoples R China
[2] Chinese Acad Forestry, Res Inst Subtrop Forestry, State Key Lab Tree Genet & Breeding, Key Lab Tree Breeding Zhejiang Prov, Hangzhou 311400, Peoples R China
[3] Jilin Agr Univ, Sch Hort, Changchun 130118, Peoples R China
[4] Agr Technol Extens Ctr Dongtai, Yancheng 224200, Peoples R China
关键词
Populus deltoids; GARP transcription factor superfamily; phosphorus and nitrogen deficiency; chlorophyll content; CHLOROPLAST DEVELOPMENT; GENE ENCODES; FAMILY; INSIGHTS; PROTEIN;
D O I
10.3390/genes16030322
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background/Objectives: The GARP transcription factor superfamily is crucial for plant growth, development, and stress responses. This study systematically identified and analyzed the GARP family genes in Populus deltoides to explore their roles in plant development and abiotic stress responses. Methods: A total of 58 PdGARP genes were identified using bioinformatics tools. Their physicochemical properties, genomic locations, conserved motifs, gene structures, and phylogenetic relationships were analyzed. Expression patterns under phosphorus and nitrogen deficiency, as well as tissue-specific expression, were investigated using RT-qPCR. Transgenic RNAi lines were generated to validate the function of GLK genes in chlorophyll biosynthesis. Results: The 58 PdGARP genes were classified into five subfamilies based on their evolutionary relationships and protein sequence similarity. Segmental duplication was found to be the primary driver of the PdGARP family's expansion. Cis-regulatory elements (CREs) related to light, hormones, and abiotic stresses were identified in the promoters of PdGARP genes. Differential expression patterns were observed for NIGT1/HRS1/HHO and PHR/PHL subfamily members under phosphorus and nitrogen deficiency, indicating their involvement in stress responses. KAN subfamily members exhibited tissue-specific expression, particularly in leaves. Structural analysis of the GLK subfamily revealed conserved alpha-helices, extended chains, and irregular coils. Transgenic RNAi lines targeting GLK genes showed significant reductions in chlorophyll and carotenoid content. Conclusions: This study provides a comprehensive analysis of the GARP transcription factor superfamily in P. deltoides, highlighting their potential roles in nutrient signaling and stress response pathways. The findings lay the foundation for further functional studies of PdGARP genes and their application in stress-resistant breeding of poplar.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Genome-wide identification, classification and analysis of heat shock transcription factor family in maize
    Lin, Yong-Xiang
    Jiang, Hai-Yang
    Chu, Zhang-Xin
    Tang, Xiu-Li
    Zhu, Su-Wen
    Cheng, Bei-Jiu
    BMC GENOMICS, 2011, 12
  • [32] Genome-Wide Identification, Classification and Expression Analysis of the MYB Transcription Factor Family in Petunia
    Chen, Guanqun
    He, Weizhi
    Guo, Xiangxin
    Pan, Junsong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [33] Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa
    Zhu, Xiaolin
    Wang, Baoqiang
    Wang, Xian
    Zhang, Chaoyang
    Wei, Xiaohong
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2021, 27 (04) : 787 - 800
  • [34] Genome-wide identification and functional analysis of Dof transcription factor family in Camelina sativa
    Tao Luo
    Yanan Song
    Huiling Gao
    Meng Wang
    Hongli Cui
    Chunli Ji
    Jiping Wang
    Lixia Yuan
    Runzhi Li
    BMC Genomics, 23
  • [35] Genome-Wide Identification and Evolutionary Analysis of the Animal Specific ETS Transcription Factor Family
    Wang, Zhipeng
    Zhang, Qin
    EVOLUTIONARY BIOINFORMATICS, 2009, 5 : 119 - 131
  • [36] Genome-wide identification and expression analysis of MYB transcription factor family in Rosa persica
    Jiang, Lv
    Feng, Ceting
    Liu, Xinying
    Xiong, Keying
    Sui, Yunji
    Guo, Runhua
    Zhang, Qixiang
    Pan, Huitang
    Yu, Chao
    Luo, Le
    GENETIC RESOURCES AND CROP EVOLUTION, 2025, 72 (03) : 3183 - 3202
  • [37] Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus
    Zhou, Yan
    Xu, Daixiang
    Jia, Ledong
    Huang, Xiaohu
    Ma, Guoqiang
    Wang, Shuxian
    Zhu, Meichen
    Zhang, Aoxiang
    Guan, Mingwei
    Lu, Kun
    Xu, Xinfu
    Wang, Rui
    Li, Jiana
    Qu, Cunmin
    GENES, 2017, 8 (10)
  • [38] Genome-wide identification and functional analysis of Dof transcription factor family in Camelina sativa
    Luo, Tao
    Song, Yanan
    Gao, Huiling
    Wang, Meng
    Cui, Hongli
    Ji, Chunli
    Wang, Jiping
    Yuan, Lixia
    Li, Runzhi
    BMC GENOMICS, 2022, 23 (01)
  • [39] Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa
    Xiaolin Zhu
    Baoqiang Wang
    Xian Wang
    Chaoyang Zhang
    Xiaohong Wei
    Physiology and Molecular Biology of Plants, 2021, 27 : 787 - 800
  • [40] Genome-wide identification, classification and analysis of heat shock transcription factor family in maize
    Yong-Xiang Lin
    Hai-Yang Jiang
    Zhang-Xin Chu
    Xiu-Li Tang
    Su-Wen Zhu
    Bei-Jiu Cheng
    BMC Genomics, 12