Multiplicative order compact operators between vector lattices and Riesz algebras

被引:0
作者
Aydin, Abdullah [1 ]
Gorokhova, Svetlana [2 ]
机构
[1] Mus Alparslan Univ, Dept Math, TR-49250 Mus, Turkiye
[2] Southern Math Inst, Vladikavkaz 362025, Russia
关键词
Vector lattice; Riesz algebra; Multiplicative order compact operator; omo- M-Weakly compact operator; omo- L-Weakly compact operator;
D O I
10.2298/FIL2419743A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present and examine the concept of multiplicative order compact operators from vector lattices to Riesz algebras. Specifically, a linear operator T from a vector lattice X to an Riesz algebra E is deemed mmm-compact, if every net x(alpha) in an m-bounded subset of X possesses a subnet x alpha beta such that Tx(alpha beta) (mo)(->) y for some y E E. Moreover, we introduce and investigate mmm-M- and mmm-L-weakly compact operators.
引用
收藏
页码:6743 / 6751
页数:9
相关论文
共 17 条
[1]  
Aliprantis C. D., 2006, POSITIVE OPERATORS
[2]  
ALIPRANTIS CD, 2003, MATH SURVEYS MONOGRA, V105
[3]  
Alpay S, 2022, RESULTS MATH, V77, DOI 10.1007/s00025-022-01650-3
[4]  
Aydin A., Matematicki Vesnik
[5]  
Aydin A., 2009, Sib. Adv. Math., V29, P164
[6]   Full lattice convergence on Riesz spaces [J].
Aydin, Abdullah ;
Emelyanov, Eduard ;
Gorokhova, Svetlana .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (03) :658-690
[7]   The multiplicative norm convergence in normed Riesz algebras [J].
Aydin, Abdullah .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (01) :24-32
[8]   Multiplicative order convergence in f-algebras [J].
Aydin, Abdullah .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (03) :998-1005
[9]  
Azouzi Y., 2021, Trends in Mathematics
[10]  
Dabboorasad Y., 2020, Uzb. Mat. Zh., V64, P159, DOI 10.29229/uzmj.2020-1-15