Approximation of skew Brownian motion by snapping-out Brownian motions

被引:0
作者
Bobrowski, Adam [1 ]
Ratajczyk, Elzbieta [1 ]
机构
[1] Lublin Univ Technol, Dept Math, Nadbystrzycka 38a, PL-20618 Lublin, Poland
关键词
complemented spaces; invariant subspaces; projection; skew and snapping-out Brownian motion; transmission conditions; KINETIC-EQUATION; DIFFUSION LIMIT; MODEL;
D O I
10.1002/mana.202400179
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We elaborate on the theorem saying that as permeability coefficients of snapping-out Brownian motions tend to infinity in such a way that their ratio remains constant, these processes converge to a skew Brownian motion. In particular, convergence of the related semigroups, cosine families, and projections is discussed.
引用
收藏
页码:829 / 848
页数:20
相关论文
共 47 条
[1]   Accurate particle-based simulation of adsorption, desorption and partial transmission [J].
Andrews, Steven S. .
PHYSICAL BIOLOGY, 2009, 6 (04)
[2]  
[Anonymous], 2007, BROWNIAN MOTION STOC, P451
[3]  
Arendt C. J. K., 2001, VECTOR VALUED LAPLAC
[4]  
Banasiak J, 2014, MODEL SIMUL SCI ENG, P1, DOI 10.1007/978-3-319-05140-6
[5]   DIFFUSION LIMIT FOR A KINETIC EQUATION WITH A THERMOSTATTED INTERFACE [J].
Basile, Giada ;
Komorowski, Tomasz ;
Olla, Stefano .
KINETIC AND RELATED MODELS, 2019, 12 (05) :1185-1196
[6]  
Bobrowski A., 1998, ANN POL MATH, V69, P107, DOI DOI 10.4064/AP-69-2-107-127
[7]  
Bobrowski A., 2015, FAMILIES OPERATORS D, V250, P87
[8]  
Bobrowski A., 1997, METHODS FUNCT ANAL T, V3, P1
[9]  
Bobrowski A., 2016, MODELS MATH BIOL ELS, V30
[10]   Diffusion approximation for a simple kinetic model with asymmetric interface [J].
BOBROWSKI, A. D. A. M. ;
KOMOROWSKI, T. O. M. A. S. Z. .
JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (02)