Cryogenic single-molecule fluorescence imaging

被引:0
作者
Yu, Phil Sang [1 ]
Kim, Chae Un [2 ]
Lee, Jong-Bong [1 ,3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 37673, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Phys, Ulsan 44919, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Div Interdisciplinary Biosci & Bioengn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Cryogenic fluorescence microscopy (Cryo-FM); Cryogenicsingle-molecule imaging; Photoblinking; Solid-immersion lens (SIL); CORRELATIVE SUPERRESOLUTION FLUORESCENCE; ELECTRON-MICROSCOPY; COLOCALIZATION MICROSCOPY; LOCALIZATION; BLINKING; CELLS;
D O I
10.5483/BMBRep.2024-0180
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-fixation techniques, including cryo-electron and cryo- fluorescence microscopy, enable the preservation of bio-logical samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-to- noise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect pho-ton detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field.
引用
收藏
页码:2 / 7
页数:6
相关论文
共 50 条
[21]   Expanding single-molecule fluorescence spectroscopy to capture complexity in biology [J].
Choi, Junhong ;
Grosely, Rosslyn ;
Puglis, Elisabetta V. ;
Puglisi, Joseph D. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2019, 58 :233-240
[22]   Fast Biosynthesis of GFP Molecules: A Single-Molecule Fluorescence Study [J].
Katranidis, Alexandros ;
Atta, Diaa ;
Schlesinger, Ramona ;
Nierhaus, Knud H. ;
Choli-Papadopoulou, Theodora ;
Gregor, Ingo ;
Gerrits, Michael ;
Bueldt, Georg ;
Fitter, Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (10) :1758-1761
[23]   Theoretical modeling of single-molecule fluorescence with complicated photon statistics [J].
Osad'ko, I. S. ;
Naumov, A. V. ;
Eremchev, I. Yu ;
Vainer, Yu G. ;
Kador, L. .
PHYSICAL REVIEW A, 2012, 86 (05)
[24]   Insights into tau function and dysfunction through single-molecule fluorescence [J].
Melo, Ana M. ;
Elbaum-Garfinkle, Shana ;
Rhoades, Elizabeth .
METHODS IN TAU CELL BIOLOGY, 2017, 141 :27-44
[25]   Single-Molecule Approaches for Superresolution Imaging, Trapping, and Nanophotonics [J].
Moerner, W. E. .
2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
[26]   Field-Controlled Charge Separation in a Conductive Matrix at the Single-Molecule Level: Toward Controlling Single-Molecule Fluorescence Intermittency [J].
Kennes, Koen ;
Dedecker, Peter ;
Hutchison, James A. ;
Fron, Eduard ;
Uji-i, Hiroshi ;
Hofkens, Johan ;
Van der Auweraer, Mark .
ACS OMEGA, 2016, 1 (06) :1383-1392
[27]   Techniques for Single-Molecule mRNA Imaging in Living Cells [J].
Czaplinski, Kevin .
NEUROEPIGENOMICS IN AGING AND DISEASE, 2017, 978 :425-441
[28]   Tunable fluorogenic DNA probes drive fast and high-resolution single-molecule fluorescence imaging [J].
Kummerlin, Mirjam ;
Zhao, Qing ;
Hazra, Jagadish ;
Hepp, Christof ;
Farrar, Alison ;
Turner, Piers ;
Kapanidis, Achillefs N. .
NUCLEIC ACIDS RESEARCH, 2025, 53 (13)
[29]   The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging [J].
Backlund, Mikael P. ;
Lew, Matthew D. ;
Backer, Adam S. ;
Sahl, Steffen J. ;
Moerner, W. E. .
CHEMPHYSCHEM, 2014, 15 (04) :587-599
[30]   Fluorophores for single-molecule localization microscopy [J].
Klementieva, N. V. ;
Bozhanova, N. G. ;
Zagaynova, E. V. ;
Lukyanov, K. A. ;
Mishin, A. S. .
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2017, 43 (03) :227-234