Cryogenic single-molecule fluorescence imaging

被引:0
|
作者
Yu, Phil Sang [1 ]
Kim, Chae Un [2 ]
Lee, Jong-Bong [1 ,3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Phys, Pohang 37673, South Korea
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Phys, Ulsan 44919, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Div Interdisciplinary Biosci & Bioengn, Pohang 37673, South Korea
关键词
Cryogenic fluorescence microscopy (Cryo-FM); Cryogenicsingle-molecule imaging; Photoblinking; Solid-immersion lens (SIL); CORRELATIVE SUPERRESOLUTION FLUORESCENCE; ELECTRON-MICROSCOPY; COLOCALIZATION MICROSCOPY; LOCALIZATION; BLINKING; CELLS;
D O I
10.5483/BMBRep.2024-0180
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cryo-fixation techniques, including cryo-electron and cryo- fluorescence microscopy, enable the preservation of bio-logical samples in a near-native state by rapidly freezing them into an amorphous ice phase. These methods prevent the structural distortions often caused by chemical fixation, allowing for high-resolution imaging. At low temperatures, fluorophores exhibit improved properties, such as extended fluorescence lifetimes, reduced photobleaching, and enhanced signal-to- noise ratios, making single-molecule imaging more accurate and insightful. Despite these advantages, challenges remain, including limitations in numerical aperture of objectives and cryo-stage for single-molecule imaging, which can affect pho-ton detection and spatial resolution. Recent advancements at low temperatures have mitigated these issues, achieving resolutions at the nanometer scale. Looking forward, innovations in super-resolution techniques, optimized fluorophores, and Artificial Intelligence (AI)-based data analysis promise to further advance the field, providing deeper insights into biomolecular dynamics and interactions. In this mini-review, we will introduce low-temperature single-molecule fluorescence imaging techniques and discuss future perspectives in this field.
引用
收藏
页码:2 / 7
页数:6
相关论文
共 50 条
  • [1] Future Paths in Cryogenic Single-Molecule Fluorescence Spectroscopy
    Adhikari, Subhasis
    Smit, Robert
    Orrit, Michel
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 128 (01): : 3 - 18
  • [2] Single-Molecule Fluorescence Imaging of Nanocatalysis
    Xiao, Yi
    Xu, Weilin
    CHINESE JOURNAL OF CHEMISTRY, 2021, 39 (06) : 1459 - 1470
  • [3] Single-Molecule Fluorescence Imaging in Living Cells
    Xia, Tie
    Li, Nan
    Fang, Xiaohong
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 64, 2013, 64 : 459 - 480
  • [4] Detectors for single-molecule fluorescence imaging and spectroscopy
    Michalet, X.
    Siegmund, O. H. W.
    Vallerga, J. V.
    Jelinsky, P.
    Millaud, J. E.
    Weiss, S.
    JOURNAL OF MODERN OPTICS, 2007, 54 (2-3) : 239 - 281
  • [5] Single-molecule fluorescence imaging of nanocatalytic processes
    Chen, Peng
    Zhou, Xiaochun
    Shen, Hao
    Andoy, Nesha May
    Choudhary, Eric
    Han, Kyu-Sung
    Liu, Guokun
    Meng, Weilin
    CHEMICAL SOCIETY REVIEWS, 2010, 39 (12) : 4560 - 4570
  • [6] Nonblinking and longlasting single-molecule fluorescence imaging
    Rasnik, Ivan
    McKinney, Sean A.
    Ha, Taekjip
    NATURE METHODS, 2006, 3 (11) : 891 - 893
  • [7] Single-molecule fluorescence imaging of photocatalytic nanomaterials
    Zhang, Shuchi
    Fan, Deqi
    Yan, Qingdian
    Lu, Yi
    Wu, Donglei
    Fu, Bing
    Zhao, Ming
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (31) : 19627 - 19662
  • [8] Emerging frontiers in single-molecule fluorescence imaging
    Moerner, WE
    Vrljic, M
    Nishimura, S
    McConnell, HM
    Willets, KA
    Twieg, RJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U284 - U284
  • [9] The bright future of single-molecule fluorescence imaging
    Juette, Manuel F.
    Terry, Daniel S.
    Wasserman, Michael R.
    Zhou, Zhou
    Altman, Roger B.
    Zheng, Qinsi
    Blanchard, Scott C.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2014, 20 : 103 - 111
  • [10] Single-Molecule Imaging With One Color Fluorescence
    Qiu, Y.
    Myong, S.
    SINGLE-MOLECULE ENZYMOLOGY: FLUORESCENCE-BASED AND HIGH-THROUGHPUT METHODS, 2016, 581 : 33 - 51