Bacteria synthesize chemically diverse capsular and secreted polysacchar ides that function in many physiological processes and are widely used in industrial applications. In the ubiquitous Wzx/Wzy-dependent biosynthetic pathways for these polysaccharides, the polysaccharide co-polymerase (PCP) facilitates the polymerization of repeat units in the periplasm, and in Gram-negative bacteria, also polysaccharide translocation across the outer membrane. These PCPs belong to the PCP-2 family, are integral inner membrane proteins with extended periplasmic domains, and functionally depend on alternating between different oligomeric states. The oligomeric state is determined by a cognate cytoplasmic bacterial tyrosine kinase (BYK), which is either part of the PCP or a stand-alone protein. Interestingly, BYK-like proteins, which lack key catalytic residues and/or the phosphorylated Tyr residues, have been described. In Myxococcus xanthus, the exopolysaccharide (EPS) is synthesized and exported via the Wzx/Wzy-dependent EPS pathway in which EpsV serves as the PCP. Here, we confirm that EpsV lacks the BYK domain. Using phylogenomics, experiments, and computational structural biology, we identify EcpK as important for EPS biosynthesis and show that it structurally resembles canonical BYKs but lacks residues important for catalysis and Tyr phosphorylation. Using proteomic analyses, two-hybrid assays, and structural model ing, we demonstrate that EcpK directly interacts with EpsV. Based on these findings , we suggest that EcpK is a BY pseudokinase and functions as a scaffold, which by direct protein-protein interactions, rather than by Tyr phosphorylation, facilitates EpsV function. EcpK and EpsV homologs are present in other bacteria, suggesting broad conservation of this mechanism and establishing a phosphorylation-independent PCP-2 subfamily.