The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment

被引:0
作者
Nkune, Nkune Williams [1 ]
Abrahamse, Heidi [1 ]
机构
[1] Univ Johannesburg, Fac Hlth Sci, Laser Res Ctr, Doornfontein, South Africa
关键词
cancer; hypoxia; nanotechnology; photoactivated chemotherapy; photodynamic therapy; RUTHENIUM(II) POLYPYRIDYL COMPLEXES; ANTICANCER DRUG; NAMI-A; CONJUGATED PYROPHEOPHORBIDE; TUMOR MICROENVIRONMENT; PHASE-I; RESISTANCE; PHOTOSENSITIZERS; NANOPARTICLES; MELANOMA;
D O I
10.1002/jbio.70005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Scientists have been actively investigating novel therapies that can effectively eradicate cancer cells with negligible side effects in normal tissues when used alone or in a combinatorial approach. Photodynamic therapy has emerged as a promising non-invasive therapy that integrates photosensitizer, oxygen, and a specific wavelength of light for the treatment of cancer. Despite encouraging outcomes yielded by PDT, conventional PSs are faced with longstanding challenges such as poor water solubility, a short half-life, and off-target toxicity. Development of nanotherapeutics has shown great potential in overcoming this issue. The tumor microenvironment is inherently hypoxic, and this promotes tumor resistance to PDT, as it is oxygen-dependent. Photoactivated chemotherapy, an oxygen-independent light-based therapy, utilizes chemotherapeutic regimens that remain inert until exposed to light, allowing target-specific activation while minimizing off-target toxicity. Integration of these techniques can improve selectivity and yield synergistic cytotoxic effects that could improve cancer treatment.
引用
收藏
页数:15
相关论文
共 121 条
[1]   New photosensitizers for photodynamic therapy [J].
Abrahamse, Heidi ;
Hamblin, Michael R. .
BIOCHEMICAL JOURNAL, 2016, 473 :347-364
[2]   Oxygen-Dependent Interactions between the Ruthenium Cage and the Photoreleased Inhibitor in NAMPT-Targeted Photoactivated Chemotherapy [J].
Abyar, Selda ;
Huang, Luojiao ;
Husiev, Yurii ;
Bretin, Ludovic ;
Chau, Bobby ;
Ramu, Vadde ;
Wildeman, Jacob Hendricus ;
Belfor, Kimberley ;
Wijaya, Lukas S. ;
van der Noord, Vera E. ;
Harms, Amy C. ;
Siegler, Maxime A. ;
Le Devedec, Sylvia E. ;
Bonnet, Sylvestre .
JOURNAL OF MEDICINAL CHEMISTRY, 2024, 67 (13) :11086-11102
[3]   The use of photodynamic therapy in medical practice [J].
Aebisher, David ;
Rogoz, Kacper ;
Mysliwiec, Angelika ;
Dynarowicz, Klaudia ;
Wiench, Rafal ;
Cieslar, Grzegorz ;
Kawczyk-Krupka, Aleksandra ;
Bartusik-Aebisher, Dorota .
FRONTIERS IN ONCOLOGY, 2024, 14
[4]   Photodynamic Therapy of Cancer: An Update [J].
Agostinis, Patrizia ;
Berg, Kristian ;
Cengel, Keith A. ;
Foster, Thomas H. ;
Girotti, Albert W. ;
Gollnick, Sandra O. ;
Hahn, Stephen M. ;
Hamblin, Michael R. ;
Juzeniene, Asta ;
Kessel, David ;
Korbelik, Mladen ;
Moan, Johan ;
Mroz, Pawel ;
Nowis, Dominika ;
Piette, Jacques ;
Wilson, Brian C. ;
Golab, Jakub .
CA-A CANCER JOURNAL FOR CLINICIANS, 2011, 61 (04) :250-281
[5]   Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment-From Benchtop to Clinical Practice [J].
Aires-Fernandes, Mariza ;
Costa, Ramon Botelho ;
do Amaral, Stephanie Rochetti ;
Mussagy, Cassamo Ussemane ;
Santos-Ebinuma, Valeria C. ;
Primo, Fernando Lucas .
MOLECULES, 2022, 27 (20)
[6]   DMSO containing ruthenium(II) hydrazone complexes: in vitro evaluation of biomolecular interaction and anticancer activity [J].
Alagesan, M. ;
Sathyadevi, P. ;
Krishnamoorthy, P. ;
Bhuvanesh, N. S. P. ;
Dharmaraj, N. .
DALTON TRANSACTIONS, 2014, 43 (42) :15829-15840
[7]   Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future [J].
Alzeibak, Razan ;
Mishchenko, Tatiana A. ;
Shilyagina, Natalia Y. ;
Balalaeva, Irina V. ;
Vedunova, Maria V. ;
Krysko, Dmitri V. .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2021, 9 (01)
[8]   Photodynamic Therapy Using a New Folate Receptor-Targeted Photosensitizer on Peritoneal Ovarian Cancer Cells Induces the Release of Extracellular Vesicles with Immunoactivating Properties [J].
Baydoun, Martha ;
Morales, Olivier ;
Frochot, Celine ;
Ludovic, Colombeau ;
Leroux, Bertrand ;
Thecua, Elise ;
Ziane, Laurine ;
Grabarz, Anne ;
Kumar, Abhishek ;
de Schutter, Clementine ;
Collinet, Pierre ;
Azais, Henri ;
Mordon, Serge ;
Delhem, Nadira .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (04)
[9]   Effects of NAMI-A and some related ruthenium complexes on cell viability after short exposure of tumor cells [J].
Bergamo, A ;
Zorzet, S ;
Gava, B ;
Sorc, A ;
Alessio, E ;
Iengo, E ;
Sava, G .
ANTI-CANCER DRUGS, 2000, 11 (08) :665-672
[10]   Fluorination on non-photolabile dppz ligands for improving Ru(ii) complex-based photoactivated chemotherapy [J].
Boerhan, Rena ;
Sun, Weize ;
Tian, Na ;
Wang, Youchao ;
Lu, Jian ;
Li, Chao ;
Cheng, Xuexin ;
Wang, Xuesong ;
Zhou, Qianxiong .
DALTON TRANSACTIONS, 2019, 48 (32) :12177-12185