Visible, near-infrared, and shortwave-infrared spectra as an input variable for digital mapping of soil organic carbon

被引:0
作者
Khosravi, Vahid [1 ]
Gholizadeh, Asa [1 ]
Kodesova, Radka [1 ]
Agyeman, Prince Chapman [1 ]
Saberioon, Mohammadmehdi [2 ]
Boruvka, Lubos [1 ]
机构
[1] Czech Univ Life Sci Prague, Fac Agrobiol Food & Nat Resources, Dept Soil Sci & Soil Protect, Kamycka 129, Suchdol 16500, Prague, Czech Republic
[2] Helmholtz Ctr Potsdam, GFZ German Res Ctr Geosci, Sect 1 4 Remote Sensing & Geoinformat, D-14473 Telegrafenberg, Potsdam, Germany
关键词
SOC modeling and mapping; Interpolated spectra; Machine learning; Regression kriging; Uncertainty; REGRESSION; UNCERTAINTY; PREDICTION; INTERPOLATION; MATTER; RISK; AREA;
D O I
10.1016/j.iswcr.2024.10.002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Power Press, and China Institute of Water Resources and Hydropower Research. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY- NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:203 / 214
页数:12
相关论文
共 54 条
[11]   Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy [J].
Chakraborty, Somsubhra ;
Weindorf, David C. ;
Deb, Shovik ;
Li, Bin ;
Paul, Sathi ;
Choudhury, Ashok ;
Ray, Deb Prasad .
GEODERMA, 2017, 289 :72-81
[12]   A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content [J].
Chen, Lin ;
Ren, Chunying ;
Li, Lin ;
Wang, Yeqiao ;
Zhang, Bai ;
Wang, Zongming ;
Li, Linfeng .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (04)
[13]   System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 [J].
Conrad, O. ;
Bechtel, B. ;
Bock, M. ;
Dietrich, H. ;
Fischer, E. ;
Gerlitz, L. ;
Wehberg, J. ;
Wichmann, V. ;
Boehner, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (07) :1991-2007
[14]   Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging [J].
Gholizadeh, Asa ;
Zizala, Daniel ;
Saberioon, Mohammadmehdi ;
Boruvka, Lubos .
REMOTE SENSING OF ENVIRONMENT, 2018, 218 :89-103
[15]   Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy [J].
Giustini, Francesca ;
Ciotoli, Giancarlo ;
Rinaldini, Alessio ;
Ruggiero, Livio ;
Voltaggio, Mario .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 661 :449-464
[16]   Geostatistical modelling of uncertainty in soil science [J].
Goovaerts, P .
GEODERMA, 2001, 103 (1-2) :3-26
[17]  
Goovaerts P., 1997, GEOSTATISTICS NATURA
[18]   Comparison of multivariate methods for arsenic estimation and mapping in floodplain soil via portable X-ray fluorescence spectroscopy [J].
Kebonye, Ndiye M. ;
John, Kingsley ;
Chakraborty, Somsubhra ;
Agyeman, Prince C. ;
Ahado, Samuel K. ;
Eze, Peter N. ;
Nemecek, Karel ;
Drabek, Ondrej ;
Boruvka, Lubos .
GEODERMA, 2021, 384
[19]   COMPUTER AIDED DESIGN OF EXPERIMENTS [J].
KENNARD, RW ;
STONE, LA .
TECHNOMETRICS, 1969, 11 (01) :137-&
[20]   Regression kriging as a workhorse in the digital soil mapper's toolbox [J].
Keskin, H. ;
Grunwald, S. .
GEODERMA, 2018, 326 :22-41