Automated epileptic seizure classification using adaptive fast Fourier transform with non-uniform sampling and improved deep belief network

被引:0
作者
Najmusseher, P. K. Nizar [2 ]
Banu, P. K. Nizar [1 ]
Janardhan, D. C. [2 ]
机构
[1] CHRIST Deemed be Univ, Dept Comp Sci, Cent Campus, Bangalore 560029, India
[2] Govt Karnataka Bangalore Med Coll & Res Inst, Bangalore Med Coll & Res Inst, Govt Karnataka, Bangalore 560002, India
关键词
EEG signals; brain-computer interaction; BCI; artificial intelligence; epileptic seizure onset classification; improved deep belief network; IDBN; fast Fourier transformation; extreme gradient boosting; FEATURE-EXTRACTION; MACHINE;
D O I
10.1504/IJIEI.2024.10066968
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In automated brain-computer interaction (BCI), EEG signals are essential. This research uses AI to detect epileptic seizures, employing data from the BONN dataset (UCI), CHB-MIT dataset (physionet server), and Bangalore EEG Epilepsy Dataset (BEED). The goal is to develop an automated system for accurate seizure detection using adaptive fast Fourier transform with non-uniform sampling (AIFFT-NS) and an improved deep belief network (IDBN) model to enhance classification accuracy. The AIFFT-NS model serves as a channel for transforming spectro-temporal data. Using various EEG datasets, a number of extensive experiments are carried out, resulting in the validation of the efficacy of the proposed approach. High accuracy metrics, with 96.16% for the BEED dataset, 99.41% for the BONN dataset, and 96.31% for the CHB-MIT dataset, represent the evidentiary outcomes. This study emphasises the critical function of AI-facilitated spectro-temporal EEG analysis within the domain of medical diagnostics, going beyond the realm of automated seizure onset classification.
引用
收藏
页数:54
相关论文
共 76 条
[1]   RETRACTED: EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review (Retracted Article) [J].
Ahmad, Ijaz ;
Wang, Xin ;
Zhu, Mingxing ;
Wang, Cheng ;
Pi, Yao ;
Khan, Javed Ali ;
Khan, Siyab ;
Samuel, Oluwarotimi Williams ;
Chen, Shixiong ;
Li, Guanglin .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
[2]   Extracting epileptic features in EEGs using a dual-tree complex wavelet transform coupled with a classification algorithm [J].
Al-Salman, Wessam ;
Li, Yan ;
Wen, Peng ;
Miften, Firas Sabar Y. ;
Oudah, Atheer ;
Al Ghayab, Hadi Ratham .
BRAIN RESEARCH, 2022, 1779
[3]  
Al-Fahoum Amjed S, 2014, ISRN Neurosci, V2014, P730218, DOI [10.1155/2014/794943, 10.1155/2014/730218]
[4]   Inspection of EEG signals for efficient seizure prediction [J].
Alshebeili, Saleh A. ;
Sedik, Ahmed ;
Abd El-Rahiem, Basma ;
Alotaiby, Turky N. ;
El Banby, Ghada M. ;
El-Khobby, Heba A. ;
Ali, Mahmoud A. A. ;
Khalaf, Ashraf A. M. ;
Abd El-Samie, Fathi E. .
APPLIED ACOUSTICS, 2020, 166
[5]  
Altameem A., 2022, Computer Systems Science & Engineering, V42
[6]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[7]  
Anter AM, 2013, FED CONF COMPUT SCI, P193
[8]  
Ashraf A., 2023, IEEE Transactions on Consumer Electronics
[9]   Effectual seizure detection using MBBF-GPSO with CNN network [J].
Atal, Dinesh Kumar ;
Singh, Mukhtiar .
COGNITIVE NEURODYNAMICS, 2024, 18 (03) :893-906
[10]   Adaptive Dynamic Dipper Throated Optimization for Feature Selection in Medical Data [J].
Atteia, Ghada ;
El-kenawy, El-Sayed M. ;
Samee, Nagwan Abdel ;
Jamjoom, Mona M. ;
Ibrahim, Abdelhameed ;
Abdelhamid, Abdelaziz A. ;
Azar, Ahmad Taher ;
Khodadadi, Nima ;
Ghanem, Reham A. ;
Shams, Mahmoud Y. .
CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01) :1883-1900