Firmware vulnerability detection and asset management through a software bill of material (SBOM) approach is integral to defensive military operations. SBOMs provide a comprehensive list of software components, enabling military organizations to identify vulnerabilities within critical systems, including those controlling various functions in military platforms, as well as in operational technologies and Internet of Things devices. This proactive approach is essential for supply chain security, ensuring that software components are sourced from trusted suppliers and have not been tampered with during production, distribution, or through updates. It is a key element of defense strategies, allowing for rapid assessment, response, and mitigation of vulnerabilities, ultimately safeguarding military capabilities and information from cyber threats. In this paper, we propose ERS0, an SBOM system, driven by artificial intelligence (AI), for detecting firmware vulnerabilities and managing firmware assets. We harness the power of pre-trained large-scale language models to effectively address a wide array of string patterns, extending our coverage to thousands of third-party library patterns. Furthermore, we employ AI-powered code clone search models, enabling a more granular and precise search for vulnerabilities at the binary level, reducing our dependence on string analysis only. Additionally, our AI models extract high-level behavioral functionalities in firmware, such as communication and encryption, allowing us to quantitatively define the behavioral scope of firmware. In preliminary comparative assessments against open-source alternatives, our solution has demonstrated better SBOM coverage, accuracy in vulnerability identification, and a wider array of features.