Improved Hille-Type and Ohriska-Type Criteria for Half-Linear Third-Order Dynamic Equations

被引:0
作者
Hassan, Taher S. [1 ,2 ,3 ]
Kachout, Mnaouer [4 ,5 ]
El-Matary, Bassant M. [6 ]
Iambor, Loredana Florentina [7 ]
Odinaev, Ismoil [8 ]
Ali, Akbar [1 ]
机构
[1] Univ Hail, Coll Sci, Dept Math, Hail 2440, Saudi Arabia
[2] Univ Mansoura, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Jadara Univ, Res Ctr, Irbid 21110, Jordan
[4] Univ Hail, Coll Comp Sci & Engn, Dept Comp Engn, Hail, Saudi Arabia
[5] Carthage Univ, InnovCOM, SupComp, Tunis 1054, Tunisia
[6] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
[7] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
[8] Ural Fed Univ, Ural Power Engn Inst, Dept Automated Elect Syst, Ekaterinburg 620002, Russia
关键词
oscillation criteria; Hille-type; Ohriska-type; differential equations; dynamic equations; time scales; NEHARI TYPE CRITERIA; OSCILLATION CRITERIA; DELAY; BEHAVIOR;
D O I
10.3390/math12233740
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we examine the oscillatory behavior of solutions to a class of half-linear third-order dynamic equations with deviating arguments {(2) ()(2) ([(1) ()(1) ((Delta) ())](Delta))}(Delta) + () ((())) = 0, on an arbitrary unbounded-above time scale T, where is an element of [(0), infinity) := [(0), infinity) boolean AND , (0) >= 0, (0) is an element of T and () := || sgn, zeta > 0. Using the integral mean approach and the known Riccati transform methodology, several improved Hille-type and Ohriska-type oscillation criteria have been derived that do not require some restrictive assumptions in the relevant results. Illustrative examples and conclusions show that these criteria are sharp for all third-order dynamic equations compared to the previous results in the literature.
引用
收藏
页数:18
相关论文
共 45 条
[31]  
Hilger Stefan., 1990, RESULTS MATH, V18, P18
[32]   NON-OSCILLATION THEOREMS [J].
HILLE, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 64 (SEP) :234-252
[33]  
Jadlovská I, 2017, ELECTRON J DIFFER EQ
[34]  
Kac V., 2002, Quantum calculus, DOI [DOI 10.1007/978-1-4613-0071-7, 10.1007/978-1-4613-0071-7]
[35]   Hille-Nehari theorems for dynamic equations with a time scale independent critical constant [J].
Karpuz, Basak .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 :336-351
[36]  
Li TX, 2021, DIFFER INTEGRAL EQU, V34, P315
[37]   Properties of solutions to porous medium problems with different sources and boundary conditions [J].
Li, Tongxing ;
Pintus, Nicola ;
Viglialoro, Giuseppe .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (03)
[38]  
Li TX, 2011, B MALAYS MATH SCI SO, V34, P639
[39]  
OHRISKA J, 1984, CZECH MATH J, V34, P107
[40]   Oscillation of third-order functional dynamic equations on time scales [J].
Saker, Samir H. .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) :2597-2614