Coefficient bounds for q-convex functions related to q-Bernoulli numbers

被引:0
作者
Breaz, Daniel [1 ]
Orhan, Halit [2 ]
Arikan, Hava [2 ]
Cotirla, Luminita-Ioana [3 ]
机构
[1] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba Iulia, Romania
[2] Atatrk Univ, Dept Math, Fac Sci, TR-25240 Erzurum, Turkiye
[3] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca, Romania
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2025年 / 33卷 / 01期
关键词
Analytic and univalent functions; q-derivative; q-convex functions; q-Bernoulli numbers; Fekete-Szeg inequality; Hankel determinant; Q-STARLIKE FUNCTIONS; EULER;
D O I
10.2478/auom-2025-0005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to present and investigate a subclass C(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.
引用
收藏
页码:77 / 92
页数:16
相关论文
共 33 条
  • [1] Ahuja O. P., 2019, J. Comput. Anal. Appl., V26, P639
  • [2] Al-Salam W. A., 1959, Math. Nachr., V17, P239
  • [3] ALDWEBY HUDA, 2016, Advanced Studies in Contemporary Mathematics, V26, P21
  • [4] COEFFICIENT BOUNDS FOR Q-STARLIKE FUNCTIONS ASSOCIATED WITH Q-BERNOULLI NUMBERS
    Caglar, Murat
    Orhan, Halit
    Srivastava, Hari Mohan
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (04): : 2354 - 2364
  • [5] POWER SERIES WITH INTEGRAL COEFFICIENTS
    CANTOR, DG
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1963, 69 (03) : 362 - &
  • [6] Q-BERNOULLI NUMBERS AND POLYNOMIALS
    CARLITZ, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1948, 15 (04) : 987 - 1000
  • [7] Carlitz's q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions
    Choi, Junesang
    Anderson, P. J.
    Srivastava, H. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (03) : 1185 - 1208
  • [8] Grenander U., 1958, California Monographs in Mathematical Sciences Univ
  • [9] Ismail M. E. H., 1990, Complex Var. Theory Appl., V14, P77, DOI DOI 10.1080/17476939008814407
  • [10] Jackson F.H., 1910, Q. J. Pure Appl. Math., V4, P193, DOI DOI 10.1017/S0080456800002751