Towards Visually Explaining Variational Autoencoders

被引:112
|
作者
Liu, Wenqian [1 ]
Li, Runze [2 ]
Zheng, Meng [3 ]
Karanam, Srikrishna [4 ]
Wu, Ziyan [4 ]
Bhanu, Bir [2 ]
Radke, Richard J. [3 ]
Camps, Octavia [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
[2] Univ Calif Riverside, Riverside, CA 92521 USA
[3] Rensselaer Polytech Inst, Troy, NY USA
[4] United Imaging Intelligence, Cambridge, MA USA
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.00867
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in convolutional neural network (CNN) model interpretability have led to impressive progress in visualizing and understanding model predictions. In particular, gradient-based visual attention methods have driven much recent effort in using visual attention maps as a means for visual explanations. A key problem, however, is these methods are designed for classification and categorization tasks, and their extension to explaining generative models, e.g., variational autoencoders (VAE) is not trivial. In this work, we take a step towards bridging this crucial gap, proposing the first technique to visually explain VAEs by means of gradient-based attention. We present methods to generate visual attention from the learned latent space, and also demonstrate such attention explanations serve more than just explaining VAE predictions. We show how these attention maps can be used to localize anomalies in images, demonstrating state-of-the-art performance on the MVTec-AD dataset. We also show how they can be infused into model training, helping bootstrap the VAE into learning improved latent space disentanglement, demonstrated on the Dsprites dataset.
引用
收藏
页码:8639 / 8648
页数:10
相关论文
共 50 条
  • [41] SPEECH DEREVERBERATION USING VARIATIONAL AUTOENCODERS
    Baby, Deepak
    Bourlard, Herve
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5784 - 5788
  • [42] A Survey on Variational Autoencoders in Recommender Systems
    Liang, Shangsong
    Pan, Zhou
    Liu, Wei
    Yin, Jian
    De Rijke, Maarten
    ACM COMPUTING SURVEYS, 2024, 56 (10)
  • [43] Energy disaggregation using variational autoencoders
    Langevin, Antoine
    Carbonneau, Marc-Andre
    Cheriet, Mohamed
    Gagnon, Ghyslain
    ENERGY AND BUILDINGS, 2022, 254
  • [44] Learning Latent Subspaces in Variational Autoencoders
    Klys, Jack
    Snell, Jake
    Zemel, Richard
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [45] Variational autoencoders for anomalous jet tagging
    Cheng, Taoli
    Arguin, Jean-Francois
    Leissner-Martin, Julien
    Pilette, Jacinthe
    Golling, Tobias
    PHYSICAL REVIEW D, 2023, 107 (01)
  • [46] Hierarchical Decompositional Mixtures of Variational Autoencoders
    Tan, Ping Liang
    Peharz, Robert
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [47] Scalable Gaussian Process Variational Autoencoders
    Jazbec, Metod
    Ashman, Matthew
    Fortuin, Vincent
    Pearce, Michael
    Mandt, Stephan
    Raetsch, Gunnar
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [48] DIVA: Domain Invariant Variational Autoencoders
    Ilse, Maximilian
    Tomczak, Jakub M.
    Louizos, Christos
    Welling, Max
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 322 - 348
  • [49] Discovering influential factors in variational autoencoders
    Liu, Shiqi
    Liu, Jingxin
    Zhao, Qian
    Cao, Xiangyong
    Li, Huibin
    Meng, Deyu
    Meng, Hongying
    Liu, Sheng
    PATTERN RECOGNITION, 2020, 100
  • [50] Dynamical Variational Autoencoders: A Comprehensive Review
    Girin, Laurent
    Leglaive, Simon
    Bie, Xiaoyu
    Diard, Julien
    Hueber, Thomas
    Alameda-Pineda, Xavier
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 15 (1-2): : 1 - 175