THE COHOMOLOGY OF p-ADIC DELIGNE-LUSZTIG SCHEMES OF COXETER TYPE

被引:0
|
作者
Ivanov, Alexander B. [1 ]
Nie, Sian [2 ,3 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Deligne-Lusztig theory; reductive groups over local fields; supercuspidal representations; Coxeter elements; deep level Deligne-Lusztig schemes; REPRESENTATIONS;
D O I
10.1017/S1474748025000040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the cohomology of the closed Drinfeld stratum of p-adic Deligne-Lusztig schemes of Coxeter type attached to arbitrary inner forms of unramified groups over a local non-archimedean field. We prove that the corresponding torus weight spaces are supported in exactly one cohomological degree and are pairwise non-isomorphic irreducible representations of the pro-unipotent radical of the corresponding parahoric subgroup. We also prove that all Moy-Prasad quotients of this stratum are maximal varieties, and we investigate the relation between the resulting representations and Kirillov's orbit method.
引用
收藏
页数:34
相关论文
共 23 条