Optimization strategy of the emerging memristors: From material preparation to device applications

被引:2
作者
Gou, Kaiyun Y. [1 ,2 ,3 ]
Li, Yanran R. [1 ]
Song, Honglin L. [1 ]
Lu, Rong [1 ]
Jiang, Jie [1 ,2 ]
机构
[1] Cent South Univ, Sch Phys, Hunan Key Lab Nanophoton & Devices, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Coll Mech & Elect Engn, State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Sch Elect Informat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CHALLENGES; TRANSITION; BEHAVIOR; FILMS; TECHNOLOGIES; PERFORMANCE; SYNAPSE;
D O I
10.1016/j.isci.2024.111327
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the advent of the post-Moore era and the era of big data, advanced data storage and processing technology are in urgent demand to break the von Neumann bottleneck. Neuromorphic computing, which mimics the computational paradigms of the human brain, offers an efficient and energy-saving way to process large datasets in parallel. Memristor is an ideal architectural unit for constructing neuromorphic computing. It offers several advantages, including a simple structure, low power consumption, non-volatility, and easy large-scale integration. The hardware-based neural network using a large-scale cross array of memristors is considered to be a potential scheme for realizing the next-generation neuromorphic computing. The performance of these devices is a key to constructing the expansive memristor arrays. Herein, this paper provides a comprehensive review of current strategies for enhancing the performance of memristors, focusing on the electronic materials and device structures. Firstly, it examines current device fabrication techniques. Subsequently, it deeply analyzes methods to improve both the performance of individual memristor and the overall performance of device array from a material and structural perspectives. Finally, it summarizes the applications and prospects of memristors in neuromorphic computing and multimodal sensing. It aims at providing an insightful guide for developing the brain-like high computer chip.
引用
收藏
页数:30
相关论文
共 192 条
[31]   Multi-material 3D nanoprinting for structures to functional micro/nanosystems [J].
Duan, Yongqing ;
Xie, Wenshuo ;
Yin, Zhouping ;
Huang, Yongan .
INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2024, 6 (06)
[32]   Image processing vision systems: Standard image sensors versus retinas [J].
Elouardi, Abdelhafid ;
Bouaziz, Samir ;
Dupret, Antoine ;
Lacassagne, Lionel ;
Klein, Jacques-Olivier ;
Reynaud, Roger .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2007, 56 (05) :1675-1687
[33]   Challenges of Big Data analysis [J].
Fan, Jianqing ;
Han, Fang ;
Liu, Han .
NATIONAL SCIENCE REVIEW, 2014, 1 (02) :293-314
[34]   Silk fibroin/graphene quantum dots composite memristor with multi-level resistive switching for synaptic emulators [J].
Fan, Suna ;
Liu, Shubin ;
Xie, Yulong ;
Zhou, Xinglu ;
Zhang, Yaopeng .
JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (10) :3730-3738
[35]   Flexible Vertical Photogating Transistor Network with an Ultrashort Channel for In-Sensor Visual Nociceptor [J].
Feng, Guangdi ;
Jiang, Jie ;
Li, Yanran ;
Xie, Dingdong ;
Tian, Bobo ;
Wan, Qing .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (36)
[36]   A Sub-10 nm Vertical Organic/Inorganic Hybrid Transistor for Pain-Perceptual and Sensitization-Regulated Nociceptor Emulation [J].
Feng, Guangdi ;
Jiang, Jie ;
Zhao, Yuhang ;
Wang, Shitan ;
Liu, Biao ;
Yin, Kai ;
Niu, Dongmei ;
Li, Xiaohui ;
Chen, Yiqin ;
Duan, Huigao ;
Yang, Junliang ;
He, Jun ;
Gao, Yongli ;
Wan, Qing .
ADVANCED MATERIALS, 2020, 32 (06)
[37]   A Fully Printed Flexible MoS2 Memristive Artificial Synapse with Femtojoule Switching Energy [J].
Feng, Xuewei ;
Li, Yida ;
Wang, Lin ;
Chen, Shuai ;
Yu, Zhi Gen ;
Tan, Wee Chong ;
Macadam, Nasiruddin ;
Hu, Guohua ;
Huang, Li ;
Chen, Li ;
Gong, Xiao ;
Chi, Dongzhi ;
Hasan, Tawfique ;
Thean, Aaron Voon-Yew ;
Zhang, Yong-Wei ;
Ang, Koh-Wee .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (12)
[38]   Memristor-based storage system with convolutional autoencoder-based image compression network [J].
Feng, Yulin ;
Zhang, Yizhou ;
Zhou, Zheng ;
Huang, Peng ;
Liu, Lifeng ;
Liu, Xiaoyan ;
Kang, Jinfeng .
NATURE COMMUNICATIONS, 2024, 15 (01)
[39]   In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching [J].
Fujii, Takashi ;
Arita, Masashi ;
Takahashi, Yasuo ;
Fujiwara, Ichiro .
APPLIED PHYSICS LETTERS, 2011, 98 (21)
[40]   Beyond the hype: Big data concepts, methods, and analytics [J].
Gandomi, Amir ;
Haider, Murtaza .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2015, 35 (02) :137-144