Optimization strategy of the emerging memristors: From material preparation to device applications

被引:2
作者
Gou, Kaiyun Y. [1 ,2 ,3 ]
Li, Yanran R. [1 ]
Song, Honglin L. [1 ]
Lu, Rong [1 ]
Jiang, Jie [1 ,2 ]
机构
[1] Cent South Univ, Sch Phys, Hunan Key Lab Nanophoton & Devices, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Coll Mech & Elect Engn, State Key Lab Precis Mfg Extreme Serv Performance, Changsha 410083, Hunan, Peoples R China
[3] Cent South Univ, Sch Elect Informat, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
CHALLENGES; TRANSITION; BEHAVIOR; FILMS; TECHNOLOGIES; PERFORMANCE; SYNAPSE;
D O I
10.1016/j.isci.2024.111327
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the advent of the post-Moore era and the era of big data, advanced data storage and processing technology are in urgent demand to break the von Neumann bottleneck. Neuromorphic computing, which mimics the computational paradigms of the human brain, offers an efficient and energy-saving way to process large datasets in parallel. Memristor is an ideal architectural unit for constructing neuromorphic computing. It offers several advantages, including a simple structure, low power consumption, non-volatility, and easy large-scale integration. The hardware-based neural network using a large-scale cross array of memristors is considered to be a potential scheme for realizing the next-generation neuromorphic computing. The performance of these devices is a key to constructing the expansive memristor arrays. Herein, this paper provides a comprehensive review of current strategies for enhancing the performance of memristors, focusing on the electronic materials and device structures. Firstly, it examines current device fabrication techniques. Subsequently, it deeply analyzes methods to improve both the performance of individual memristor and the overall performance of device array from a material and structural perspectives. Finally, it summarizes the applications and prospects of memristors in neuromorphic computing and multimodal sensing. It aims at providing an insightful guide for developing the brain-like high computer chip.
引用
收藏
页数:30
相关论文
共 192 条
[91]   Wafer-Scale 2D Hafnium Diselenide Based Memristor Crossbar Array for Energy-Efficient Neural Network Hardware [J].
Li, Sifan ;
Pam, Mei-Er ;
Li, Yesheng ;
Chen, Li ;
Chien, Yu-Chieh ;
Fong, Xuanyao ;
Chi, Dongzhi ;
Ang, Kah-Wee .
ADVANCED MATERIALS, 2022, 34 (25)
[92]   Electron-beam-irradiated rhenium disulfide memristors with low variability for neuromorphic computing [J].
Li, Sifan ;
Li, Bochang ;
Feng, Xuewei ;
Chen, Li ;
Li, Yesheng ;
Huang, Li ;
Fong, Xuanyao ;
Ang, Kah-Wee .
NPJ 2D MATERIALS AND APPLICATIONS, 2021, 5 (01)
[93]   Vertical Ion-Coupling Ga2O3 TFT With Spatiotemporal Logic Encryption [J].
Li, Yanran ;
Song, Honglin ;
Jiang, Jie .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (06) :3122-3125
[94]   A biopolymer-gated ionotronic junctionless oxide transistor array for spatiotemporal pain-perception emulation in nociceptor network [J].
Li, Yanran ;
Yin, Kai ;
Diao, Yu ;
Fang, Mei ;
Yang, Junliang ;
Zhang, Jian ;
Cao, Hongtao ;
Liu, Xiaoliang ;
Jiang, Jie .
NANOSCALE, 2022, 14 (06) :2316-2326
[95]   Hardware Implementation of Neuromorphic Computing Using Large-Scale Memristor Crossbar Arrays [J].
Li, Yesheng ;
Ang, Kah-Wee .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (01)
[96]   Multifunctional optoelectronic memristor based on CeO2/MoS2 heterojunction for advanced artificial synapses and bionic visual system with nociceptive sensing [J].
Lin, Yonghui ;
Wang, Wenxiao ;
Li, Rongliang ;
Kim, Jeonghyun ;
Zhang, Chunwei ;
Kan, Hao ;
Li, Yang .
NANO ENERGY, 2024, 121
[97]   Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates [J].
Liu, Keng-Ku ;
Zhang, Wenjing ;
Lee, Yi-Hsien ;
Lin, Yu-Chuan ;
Chang, Mu-Tung ;
Su, ChingYuan ;
Chang, Chia-Seng ;
Li, Hai ;
Shi, Yumeng ;
Zhang, Hua ;
Lai, Chao-Sung ;
Li, Lain-Jong .
NANO LETTERS, 2012, 12 (03) :1538-1544
[98]   Designing High-Performance Storage in HfO2/BiFeO3 Memristor for Artificial Synapse Applications [J].
Liu, Lei ;
Xiong, Wen ;
Liu, Yanxin ;
Chen, Kaige ;
Xu, Zhong ;
Zhou, Yi ;
Han, Jia ;
Ye, Cong ;
Chen, Xin ;
Song, Zhitang ;
Zhu, Min .
ADVANCED ELECTRONIC MATERIALS, 2020, 6 (02)
[99]   A Self-Oscillated Organic Synapse for In-Memory Two-Factor Authentication [J].
Liu, Shuzhi ;
Zhong, Xiaolong ;
Li, Yuxuan ;
Guo, Bingjie ;
He, Zhilong ;
Wu, Zhixin ;
Liu, Sixian ;
Guo, Yanbo ;
Shi, Xiaoling ;
Chen, Weilin ;
Duan, Hongxiao ;
Zeng, Jianmin ;
Liu, Gang .
ADVANCED SCIENCE, 2024, 11 (21)
[100]   An ultrasmall organic synapse for neuromorphic computing [J].
Liu, Shuzhi ;
Zeng, Jianmin ;
Wu, Zhixin ;
Hu, Han ;
Xu, Ao ;
Huang, Xiaohe ;
Chen, Weilin ;
Chen, Qilai ;
Yu, Zhe ;
Zhao, Yinyu ;
Wang, Rong ;
Han, Tingting ;
Li, Chao ;
Gao, Pingqi ;
Kim, Hyunwoo ;
Baik, Seung Jae ;
Zhang, Ruoyu ;
Zhang, Zhang ;
Zhou, Peng ;
Liu, Gang .
NATURE COMMUNICATIONS, 2023, 14 (01)