SOLVABILITY FOR COUPLED IMPULSIVE FRACTIONAL PROBLEMS OF THE KIRCHHOFF TYPE WITH P&Q-LAPLACIAN

被引:0
作者
Wang, Yi [1 ]
Tian, Lixin [2 ,3 ]
机构
[1] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R China
[3] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 06期
关键词
Kirchhoff fractional differential equations; p&q- Laplacian; impulsive problems; variational methods; POSITIVE SOLUTIONS; NEHARI MANIFOLD; EXISTENCE; MULTIPLICITY; EQUATIONS; Q)-LAPLACIAN; SYSTEM; (P;
D O I
10.11948/20230465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence and multiplicity of nontrivial solutions for the p&q-Laplacian Kirchhoff impulsive fractional differential equations through variational methods. By utilizing the Nehari manifold and fibering maps, we establish the existence of at least one nontrivial solution to such equations for any (lambda, mu) is an element of Theta(& lowast;). Furthermore, using the idea of truncation arguments and Krasnoselskii genus theory, we demonstrate the existence of infinitely many nontrivial solutions for the equation when Kirchhoff functions M-1 and M-2 are degenerate considering any (lambda, mu) is an element of Theta(& lowast;& lowast;).
引用
收藏
页码:3099 / 3133
页数:35
相关论文
共 30 条