FedGES: A Federated Learning Approach for Bayesian Network Structure Learning

被引:0
作者
Torrijos, Pablo [1 ,2 ]
Gamez, Jose A. [1 ,2 ]
Puerta, Jose M. [1 ,2 ]
机构
[1] Univ Castilla La Mancha, Inst Invest Informat Albacete I3A, Albacete 02071, Spain
[2] Univ Castilla La Mancha, Dept Sistemas Informaticos, Albacete 02071, Spain
来源
DISCOVERY SCIENCE, DS 2024, PT II | 2025年 / 15244卷
关键词
Federated learning; Bayesian Network structure learning; Bayesian Network fusion/aggregation; EFFICIENT;
D O I
10.1007/978-3-031-78980-9_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian Network (BN) structure learning traditionally centralizes data, raising privacy concerns when data is distributed across multiple entities. This research introduces Federated GES (FedGES), a novel Federated Learning approach tailored for BN structure learning in decentralized settings using the Greedy Equivalence Search (GES) algorithm. FedGES uniquely addresses privacy and security challenges by exchanging only evolving network structures, not parameters or data. It performs collaborative model development, using structural fusion to combine the limited models generated by each client in successive iterations. A controlled structural fusion is also proposed to enhance client consensus when adding any edge. Experimental results on various BNs from bnlearn's BN Repository validate the effectiveness of FedGES, particularly in high-dimensional (a large number of variables) and sparse data scenarios, offering a practical and privacy-preserving solution for real-world BN structure learning.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 50 条
[31]   An Adaptive Federated Learning Approach for Efficiency and Privacy Preservation of Dynamic Network of IoT [J].
Dave, Madhavi ;
Bhatt, Dulari ;
Mundanad, Manjari .
SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 2, SMARTCOM 2024, 2024, 946 :301-310
[32]   Federated Bayesian Deep Learning: The Application of Statistical Aggregation Methods to Bayesian Models [J].
Fischer, John ;
Orescanin, Marko ;
Loomis, Justin ;
Mcclure, Patrick .
IEEE ACCESS, 2024, 12 :185790-185806
[33]   Unveiling the Wireless Network Limitations in Federated Learning [J].
Eris, Mumtaz Cem ;
Kantarci, Burak ;
Oktug, Sema .
2021 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (DYSPAN), 2021, :262-267
[34]   Adaptive Network Pruning for Wireless Federated Learning [J].
Liu, Shengli ;
Yu, Guanding ;
Yin, Rui ;
Yuan, Jiantao .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (07) :1572-1576
[35]   Resource management at the network edge for federated learning [J].
Trindade, Silvana ;
Bittencourt, Luiz F. ;
da Fonseca, Nelson L. S. .
DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (03) :765-782
[36]   Neural network quantization in federated learning at the edge [J].
Tonellotto, Nicola ;
Gotta, Alberto ;
Nardini, Franco Maria ;
Gadler, Daniele ;
Silvestri, Fabrizio .
INFORMATION SCIENCES, 2021, 575 :417-436
[37]   Network Anomaly Detection Using Federated Learning [J].
Marfo, William ;
Tosh, Deepak K. ;
Moore, Shirley V. .
2022 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM), 2022,
[38]   A federated learning method for network intrusion detection [J].
Tang, Zhongyun ;
Hu, Haiyang ;
Xu, Chonghuan .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (10)
[39]   Function Placement for In-network Federated Learning [J].
Yellas, Nour-El-Houda ;
Addis, Bernardetta ;
Boumerdassi, Selma ;
Riggio, Roberto ;
Secci, Stefano .
COMPUTER NETWORKS, 2025, 256
[40]   Bayesian Network Structure Learning Based on Improved Whale Optimization Strategy [J].
Liu Haoran ;
Zhang Liyue ;
Fan Ruixing ;
Wang Haiyu ;
Zhang Chunlan .
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (06) :1434-1441