Deblurring Videos Using Spatial-Temporal Contextual Transformer With Feature Propagation

被引:1
作者
Zhang, Liyan [1 ]
Xu, Boming [2 ]
Yang, Zhongbao [2 ]
Pan, Jinshan [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Videos; Transformers; Feature extraction; Three-dimensional displays; Image restoration; Convolutional neural networks; Optical imaging; Context modeling; Computational modeling; Optical propagation; Video deblurring; self-attention; contextual transformer; non-local temporal information; feature propagation;
D O I
10.1109/TIP.2024.3482176
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a simple and effective approach to explore both local spatial-temporal contexts and non-local temporal information for video deblurring. First, we develop an effective spatial-temporal contextual transformer to explore local spatial-temporal contexts from videos. As the features extracted by the spatial-temporal contextual transformer does not model the non-local temporal information of video well, we then develop a feature propagation method to aggregate useful features from the long-range frames so that both local spatial-temporal contexts and non-local temporal information can be better utilized for video deblurring. Finally, we formulate the spatial-temporal contextual transformer with the feature propagation into a unified deep convolutional neural network (CNN) and train it in an end-to-end manner. We show that using the spatial-temporal contextual transformer with the feature propagation is able to generate useful features and makes the deep CNN model more compact and effective for video deblurring. Extensive experimental results show that the proposed method performs favorably against state-of-the-art ones on the benchmark datasets in terms of accuracy and model parameters.
引用
收藏
页码:6354 / 6366
页数:13
相关论文
共 50 条
  • [21] A Spatial-Temporal Transformer Network for City-Level Cellular Traffic Analysis and Prediction
    Gu, Bo
    Zhan, Junhui
    Gong, Shimin
    Liu, Wanquan
    Su, Zhou
    Guizani, Mohsen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (12) : 9412 - 9423
  • [22] Multi-Target Tracking for Satellite Videos Guided by Spatial-Temporal Proximity and Topological Relationships
    Hong, Jianzhi
    Wang, Taoyang
    Han, Yuqi
    Wei, Tong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [23] Multi-Task Spatial-Temporal Transformer for Multi-Variable Meteorological Forecasting
    Li, Tian-Bao
    Liu, An-An
    Song, Dan
    Li, Wen-Hui
    Zhang, Jing
    Wei, Zhi-Qiang
    Su, Yu-Ting
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8876 - 8888
  • [24] A Multiview Spatial-Temporal Adaptive Transformer-GRU Framework for Traffic Flow Prediction
    Hu, Yang
    Li, Shaobo
    Xia, Dawen
    Zhang, Wenyong
    Yuan, Panliang
    Wu, Fengbin
    Li, Huaqing
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (06): : 7114 - 7132
  • [25] Multilevel Spatial-Temporal Feature Aggregation for Video Object Detection
    Xu, Chao
    Zhang, Jiangning
    Wang, Mengmeng
    Tian, Guanzhong
    Liu, Yong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (11) : 7809 - 7820
  • [26] Spatial-Temporal Feature Representation Learning for Facial Fatigue Detection
    Wang, Changyuan
    Yan, Ting
    Jia, Hongbo
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (12)
  • [27] Multi-Scale Spatial-Temporal Transformer for Meteorological Variable Forecasting
    Li, Tian-Bao
    Su, Yu-Ting
    Song, Dan
    Li, Wen-Hui
    Wei, Zhi-Qiang
    Liu, An-An
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (03) : 2474 - 2486
  • [28] ST-Tran: Spatial-Temporal Transformer for Cellular Traffic Prediction
    Liu, Qingyao
    Li, Jianwu
    Lu, Zhaoming
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3325 - 3329
  • [29] Global-Local Feature Learning via Dynamic Spatial-Temporal Graph Neural Network in Meteorological Prediction
    Chen, Yibi
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6280 - 6292
  • [30] Sparse Transformer Network With Spatial-Temporal Graph for Pedestrian Trajectory Prediction
    Gao, Long
    Gu, Xiang
    Chen, Feng
    Wang, Jin
    IEEE ACCESS, 2024, 12 : 144725 - 144737