Deblurring Videos Using Spatial-Temporal Contextual Transformer With Feature Propagation

被引:1
作者
Zhang, Liyan [1 ]
Xu, Boming [2 ]
Yang, Zhongbao [2 ]
Pan, Jinshan [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 210016, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Videos; Transformers; Feature extraction; Three-dimensional displays; Image restoration; Convolutional neural networks; Optical imaging; Context modeling; Computational modeling; Optical propagation; Video deblurring; self-attention; contextual transformer; non-local temporal information; feature propagation;
D O I
10.1109/TIP.2024.3482176
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a simple and effective approach to explore both local spatial-temporal contexts and non-local temporal information for video deblurring. First, we develop an effective spatial-temporal contextual transformer to explore local spatial-temporal contexts from videos. As the features extracted by the spatial-temporal contextual transformer does not model the non-local temporal information of video well, we then develop a feature propagation method to aggregate useful features from the long-range frames so that both local spatial-temporal contexts and non-local temporal information can be better utilized for video deblurring. Finally, we formulate the spatial-temporal contextual transformer with the feature propagation into a unified deep convolutional neural network (CNN) and train it in an end-to-end manner. We show that using the spatial-temporal contextual transformer with the feature propagation is able to generate useful features and makes the deep CNN model more compact and effective for video deblurring. Extensive experimental results show that the proposed method performs favorably against state-of-the-art ones on the benchmark datasets in terms of accuracy and model parameters.
引用
收藏
页码:6354 / 6366
页数:13
相关论文
共 50 条
  • [1] LightViD: Efficient Video Deblurring With Spatial-Temporal Feature Fusion
    Lin, Liqun
    Wei, Guangpeng
    Liu, Kanglin
    Feng, Wanjian
    Zhao, Tiesong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7430 - 7439
  • [2] Anomaly Detection in Weakly Supervised Videos Using Multistage Graphs and General Deep Learning Based Spatial-Temporal Feature Enhancement
    Shin, Jungpil
    Kaneko, Yuta
    Miah, Abu Saleh Musa
    Hassan, Najmul
    Nishimura, Satoshi
    IEEE ACCESS, 2024, 12 : 65213 - 65227
  • [3] Learning Complementary Spatial-Temporal Transformer for Video Salient Object Detection
    Liu, Nian
    Nan, Kepan
    Zhao, Wangbo
    Yao, Xiwen
    Han, Junwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10663 - 10673
  • [4] CTVSR: Collaborative Spatial-Temporal Transformer for Video Super-Resolution
    Tang, Jun
    Lu, Chenyan
    Liu, Zhengxue
    Li, Jiale
    Dai, Hang
    Ding, Yong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 5018 - 5032
  • [5] STPNet: A Spatial-Temporal Propagation Network for Background Subtraction
    Yang, Yizhong
    Ruan, Jiahao
    Zhang, Yongqiang
    Cheng, Xin
    Zhang, Zhang
    Xie, Guangjun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2145 - 2157
  • [6] Typical Facial Expression Network Using a Facial Feature Decoupler and Spatial-Temporal Learning
    Teng, Jianing
    Zhang, Dong
    Zou, Wei
    Li, Ming
    Lee, Dah-Jye
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (02) : 1125 - 1137
  • [7] Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-Local Spatial-Temporal Similarity
    Pan, Jinshan
    Xu, Boming
    Bai, Haoran
    Tang, Jinhui
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9411 - 9425
  • [8] Trajectory Prediction for Autonomous Driving Using Spatial-Temporal Graph Attention Transformer
    Zhang, Kunpeng
    Feng, Xiaoliang
    Wu, Lan
    He, Zhengbing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 22343 - 22353
  • [9] A Multitemporal Scale and Spatial-Temporal Transformer Network for Temporal Action Localization
    Gao, Zan
    Cui, Xinglei
    Zhuo, Tao
    Cheng, Zhiyong
    Liu, An-An
    Wang, Meng
    Chen, Shenyong
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2023, 53 (03) : 569 - 580
  • [10] STeInFormer: Spatial-Temporal Interaction Transformer Architecture for Remote Sensing Change Detection
    Ma, Xiaowen
    Wu, Zhenkai
    Ma, Mengting
    Zhao, Mengjiao
    Yang, Fan
    Du, Zhenhong
    Zhang, Wei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 3735 - 3745