Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds

被引:0
作者
Fan, Yushuang [1 ]
Zheng, Tao [2 ]
机构
[1] China Univ Geosci Beijing, Math Coll, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Sasakian manifold; basic Chern class; continuity equation; transverse K & auml; hler metric; eta-Einstein metric; MONGE-AMPERE EQUATION; KAHLER-RICCI FLOW; EINSTEIN-METRICS; ELLIPTIC-EQUATIONS; COMPLEX; GEOMETRY;
D O I
10.3390/math12193132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the continuity equation of transverse K & auml;hler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique eta-Einstein metric in the basic Bott-Chern cohomological class of the initial transverse K & auml;hler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the K & auml;hler metrics studied by La Nave and Tian, and also counterparts of the Sasaki-Ricci flow studied by Smoczyk, Wang, and Zhang.
引用
收藏
页数:28
相关论文
共 77 条
  • [1] Altinok S., 2002, Contemp. Math., V314, P25
  • [2] Angella D., 2014, Lecture Notes in Mathematics, V2095
  • [3] [Anonymous], 1960, TOHOKU MATH JOUR, DOI 10.2748/tmj/1178244407
  • [4] AUBIN T, 1978, B SCI MATH, V102, P63
  • [5] Aubin T., 1998, Some nonlinear problems in Riemannian geometry
  • [6] A foliated Hitchin-Kobayashi correspondence
    Baraglia, David
    Hekmati, Pedram
    [J]. ADVANCES IN MATHEMATICS, 2022, 408
  • [7] Emergent Sasaki-Einstein geometry and AdS/CFT
    Berman, Robert J.
    Collins, Tristan C.
    Persson, Daniel
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Biswas I, 2010, ADV THEOR MATH PHYS, V14, P541
  • [9] ON CONTACT MANIFOLDS
    BOOTHBY, WM
    WANG, HC
    [J]. ANNALS OF MATHEMATICS, 1958, 68 (03) : 721 - 734
  • [10] Boyer C.P., 2008, Oxford Mathematical Monographs, V1st ed.