Existence of solutions for anisotropic Kirchhoff-Boussinesq equations with exponential growth

被引:0
|
作者
Razani, A. [1 ]
Carlos, R. D. [2 ]
Salirrosas, S. M. A. [2 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
[2] Univ Brasilia, Dept Matemat, Brasilia, Brazil
关键词
Kirchhoff-Boussinesq equation; ground state solution; Nehari manifold; biharmonic operator; anisotropic p-Laplacian; critical exponential growth; NONTRIVIAL SOLUTIONS; INEQUALITY;
D O I
10.1080/17476933.2024.2437805
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the anisotropic version of the Kirchhoff-Boussinesq type problem Delta(2)u - & sum;(4)(i=1)partial derivative/partial derivative x(i)(|partial derivative u/partial derivative x(i)|(pi-2)partial derivative u/partial derivative x(i)) = f(u), in a smooth bounded domain Omega subset of R-4, where 2< p(1), p(2), p(3), p(4) < 4 and f : R -> R is a superlinear continuous class function with exponential subcritical or critical growth. By imposing the boundary condition u = Delta u = 0 on partial derivative Omega and utilizing the Nehari manifold method, the existence of a ground state solution is proven.
引用
收藏
页数:15
相关论文
共 50 条