A novel explicit fully-discrete momentum-preserving scheme of damped nonlinear stochastic wave equation influenced by multiplicative space-time noise

被引:2
作者
Wang, Feng [1 ]
Wang, Zhenyu [1 ]
Ma, Qiang [1 ]
Ding, Xiaohua [1 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
基金
中国国家自然科学基金;
关键词
Damped nonlinear stochastic wave equation; (Averaged) global momentum evolution law; Explicit momentum-preserving scheme; Multiplicative space-time noise;
D O I
10.1016/j.aml.2024.109325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the evolution laws of global momentum and averaged global momentum for the damped nonlinear stochastic wave equation (DNSWE) influenced by multiplicative space-time noise are derived. We innovatively combine the second-order central finite difference method and discrete gradient method in space, and integrate the splitting method and Stormer-Verlet type method in time. Both the novel spatial semi-discrete scheme and fully-discrete scheme constructed in this way can successfully preserve the corresponding evolution laws for discrete global momentum and discrete averaged global momentum. Numerical experiments on DNSWE with cubic nonlinearity validate the theoretical results.
引用
收藏
页数:7
相关论文
共 15 条
[1]   FULL DISCRETIZATION OF SEMILINEAR STOCHASTIC WAVE EQUATIONS DRIVEN BY MULTIPLICATIVE NOISE [J].
Anton, Rikard ;
Cohen, David ;
Larsson, Stig ;
Wang, Xiaojie .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :1093-1119
[2]   STRONG CONVERGENCE OF A VERLET INTEGRATOR FOR THE SEMILINEAR STOCHASTIC WAVE EQUATION [J].
Banjai, Lehel ;
Lord, Gabriel ;
Molla, Jeta .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) :1976-2003
[3]   The stochastic nonlinear damped wave equation [J].
Barbu, V ;
Da Prato, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 46 (2-3) :125-141
[4]   Second Order Conformal Symplectic Schemes for Damped Hamiltonian Systems [J].
Bhatt, Ashish ;
Floyd, Dwayne ;
Moore, Brian E. .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) :1234-1259
[5]   Invariant measures for stochastic nonlinear beam and wave equations [J].
Brzezniak, Zdzislaw ;
Ondrejat, Martin ;
Seidler, Jan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) :4157-4179
[6]   A fully discrete approximation of the one-dimensional stochastic wave equation [J].
Cohen, David ;
Quer-Sardanyons, Lluis .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (01) :400-420
[7]   A TRIGONOMETRIC METHOD FOR THE LINEAR STOCHASTIC WAVE EQUATION [J].
Cohen, David ;
Larsson, Stig ;
Sigg, Magdalena .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :204-222
[8]  
Da Prato G., 2014, Encyclopedia of Mathematics and its Applications, DOI DOI 10.1017/CBO9781107295513
[9]   Random attractors for damped stochastic wave equations with multiplicative noise [J].
Fan, Xiaoming .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (04) :421-437
[10]  
Haier E., 2006, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations