Highly Dispersed ZnO Sites in a ZnO/ZrO2 Catalyst Promote Carbon Dioxide-to-Methanol Conversion

被引:9
作者
Zhang, Xibo [1 ,2 ,3 ]
Yu, Xiang [1 ]
Mendes, Rafael G. [4 ]
Matvija, Peter [5 ]
Melcherts, Angela E. M. [1 ]
Sun, Chunning [1 ]
Ye, Xinwei [1 ]
Weckhuysen, Bert M. [1 ]
Monai, Matteo [1 ]
机构
[1] Univ Utrecht, Inorgan Chem & Catalysis Grp, Inst Sustainable & Circular Chem, Univ Weg 99, NL-3584 CG Utrecht, Netherlands
[2] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China
[4] Univ Utrecht, Debye Inst Nanomat Sci, Soft Condensed Matter Grp, Heidelberglaan 8, NL-3584 CS Utrecht, Netherlands
[5] Charles Univ Prague, Dept Surface & Plasma Sci, Fac Math & Phys, Holesovickach 2, Prague 18000 8, Czech Republic
基金
荷兰研究理事会;
关键词
CO2; hydrogenation; Methanol; Zirconia; Zinc oxide; Support effects; CO2; HYDROGENATION; NANOPARTICLES; SPILLOVER; SIZE;
D O I
10.1002/anie.202416899
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
ZnO/ZrO2 catalysts have shown better activity in the CO2 hydrogenation to methanol compared with single component counterparts, but the interaction between ZnO and ZrO2 is still poorly understood. In particular, the effect of the ZrO2 support phase (tetragonal vs. monoclinic) was not systematically explored. Here, we have synthesized ZnO/ZrO2 catalysts supported on tetragonal ZrO2 (ZnO/ZrO2-t) and monoclinic ZrO2 (ZnO/ZrO2-m), which resulted in the formation of different ZnOx species, consisting of sub-nanometer ZnO moieties and large-sized ZnO particles, respectively. ZnO/ZrO2-t exhibited a higher methanol selectivity (81 vs. 39%) and methanol yield (1.25 vs. 0.67mmolg(-1)h(-1)) compared with ZnO/ZrO2-m. The difference in performance was attributed to the redox state and degree of dispersion of Zn, based on spectroscopy and microscopy results. ZnO/ZrO2-t had a high density of ZnOx-ZrOy sites, which favored the formation of active HCOO* species and enhanced the yield and selectivity of methanol along the formate pathway. Such ZnO clusters were further dispersed on ZrO2-t during catalysis, while larger ZnO particles on ZnO/ZrO2-m remained stable throughout the reaction. This study shows that the phase of ZrO2 supports can be used to control the dispersion of ZnO and the catalyst surface chemistry, and lead to enhanced catalytic performance.
引用
收藏
页数:10
相关论文
共 36 条
[21]   A Comprehensive DFT Investigation of Bulk and Low-Index Surfaces of ZrO2 Polymorphs [J].
Ricca, Chiara ;
Ringuede, Armelle ;
Cassir, Michel ;
Adamo, Carlo ;
Labat, Frederic .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (01) :9-21
[22]   Role of the Cu-ZrO2 Interfacial Sites for Conversion of Ethanol to Ethyl Acetate and Synthesis of Methanol from CO2 and H2 [J].
Ro, Insoo ;
Liu, Yifei ;
Ball, Madelyn R. ;
Jackson, David H. K. ;
Chada, Joseph Paul ;
Sener, Canan ;
Kuech, Thomas F. ;
Madon, Rostam J. ;
Huber, George W. ;
Dumesic, James A. .
ACS CATALYSIS, 2016, 6 (10) :7040-7050
[23]   Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2 [J].
Samson, K. ;
Sliwa, M. ;
Socha, R. P. ;
Gora-Marek, K. ;
Mucha, D. ;
Rutkowska-Zbik, D. ;
Paul, J-F. ;
Ruggiero-Mikolajczyk, M. ;
Grabowski, R. ;
Sloczynski, J. .
ACS CATALYSIS, 2014, 4 (10) :3730-3741
[24]   FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources [J].
Shaltout, Abdallah A. ;
Allam, Moussa A. ;
Moharram, Mohamed A. .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2011, 83 (01) :56-60
[25]   Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis [J].
Song, Huiqing ;
Laudenschleger, Daniel ;
Carey, John J. ;
Ruland, Holger ;
Nolan, Michael ;
Muhler, Martin .
ACS CATALYSIS, 2017, 7 (11) :7610-7622
[26]   Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots [J].
Sowik, Jakub ;
Miodynska, Magdalena ;
Bajorowicz, Beata ;
Mikolajczyk, Alicja ;
Lisowski, Wojciech ;
Klimczuk, Tomasz ;
Kaczor, Daniel ;
Medynska, Adriana Zaleska ;
Malankowska, Anna .
APPLIED SURFACE SCIENCE, 2019, 464 :651-663
[27]   Structural Evolution and Dynamics of an In2O3 Catalyst for CO2 Hydrogenation to Methanol: An Operando XAS-XRD and In Situ TEM Study [J].
Tsoukalou, Athanasia ;
Abdala, Paula M. ;
Stoian, Dragos ;
Huang, Xing ;
Willinger, Marc-Georg ;
Fedorov, Alexey ;
Mueller, Christoph R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (34) :13497-13505
[28]   Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol [J].
Wang, Yuhao ;
Kattel, Shyam ;
Gao, Wengui ;
Li, Kongzhai ;
Liu, Ping ;
Chen, Jingguang G. ;
Wang, Hua .
NATURE COMMUNICATIONS, 2019, 10 (1)
[29]   Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation [J].
Wu, Congyi ;
Lin, Lili ;
Liu, Jinjia ;
Zhang, Jingpeng ;
Zhang, Feng ;
Zhou, Tong ;
Rui, Ning ;
Yao, Siyu ;
Deng, Yuchen ;
Yang, Feng ;
Xu, Wenqian ;
Luo, Jun ;
Zhao, Yue ;
Yan, Binhang ;
Wen, Xiao-Dong ;
Rodriguez, Jose A. ;
Ma, Ding .
NATURE COMMUNICATIONS, 2020, 11 (01)
[30]   Mild Hydrothermal Degradation of Cotton Cellulose by using a Mixed-Metal-Oxide ZnO-ZrO2 Catalyst [J].
Yang, Fang ;
Li, Gang ;
Gao, Peng ;
Lv, Xiao-Na ;
Sun, Xiaofeng ;
Liu, Zhi-Hua ;
Fan, Hongxian .
ENERGY TECHNOLOGY, 2013, 1 (10) :581-586