3M engineering approaches to combat high-shear thrombosis: Integrating modeling, microfluidics, and mechanobiology

被引:0
作者
Sun, Allan [1 ,2 ,3 ,4 ]
Nasser, Arian [1 ,2 ,3 ]
Yap, Nicole Alexis [1 ]
Gao, Rui [1 ,3 ]
Ju, Lining Arnold [1 ,2 ,3 ,4 ]
机构
[1] Univ Sydney, Sch Biomed Engn, Darlington, NSW 2008, Australia
[2] Univ Sydney, Charles Perkins Ctr, Camperdown, NSW 2006, Australia
[3] Univ Sydney, Nano Inst Sydney Nano, Camperdown, NSW 2006, Australia
[4] Heart Res Inst, Camperdown, NSW 2042, Australia
关键词
Thrombosis; Hemodynamics; Microfluidics; Platelet; Mechanobiology; IN-VITRO; PLATELET ACTIVATION; STRESS; AGGREGATION; DEVICE; HEMOSTASIS; ADHESION;
D O I
10.1016/j.cobme.2025.100576
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Arterial thrombosis remains a significant global health concern, with shear-induced platelet aggregation (SIPA) playing a crucial role. This review focuses on the integration of three key engineering approaches-Computational Modeling Micro- fluidics and Mechanobiology (3 M)-in understanding and combating high-shear thrombosis. We discuss the biomechanical mechanisms of SIPA, highlighting how platelet mechanoreceptors and von Willebrand factor interactions drive thrombosis under pathological flow conditions. Through computational fluid dynamics (CFD), key hemodynamic metrics including time-averaged wall shear stress, oscillatory shear index, and relative residence time have been developed to predict thrombosis risk. Microfluidic platforms, ranging from straight channels to stenotic geometries, provide insights into platelet behavior under various shear conditions while enabling rapid screening of antithrombotic therapies. The integration of these experimental approaches with CFD analysis offers powerful tools for predicting thrombosis risk and optimizing device designs, particularly in mechanical circulatory support devices (MCSDs). Recent advances in mechanobiology have revealed how mechanical forces trigger cellular responses through membrane damage and mechanosensitive channels, offering new therapeutic targets. This review underscores how the synergy between these 3 M engineering approaches advances our understanding of the complex interplay between hemodynamics and thrombosis, paving the way for improved antithrombotic therapies and medical device designs essential to optimizing MCSDs, such as left ventricular assist devices and extracorporeal membrane oxygenators.
引用
收藏
页数:13
相关论文
共 80 条
[41]   A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives [J].
Liu, Peng ;
Chen, Guiliang ;
Zhang, Jingchen .
MOLECULES, 2022, 27 (04)
[42]   Impact on hemodynamics in carotid arteries with carotid webs at different locations: A Numerical Study Integrating Thrombus Growth Model [J].
Liu, Xinhui ;
Song, Pan ;
Gao, Qi ;
Dai, Min ;
Rao, Junjie ;
Wen, Jun .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 243
[43]   SIPA in 10 milliseconds: VWF tentacles agglomerate and capture platelets under high shear [J].
Liu, Zixiang Leonardo ;
Bresette, Christopher ;
Aidun, Cyrus K. ;
Ku, David N. .
BLOOD ADVANCES, 2022, 6 (08) :2453-2465
[44]   Synthesis and characterization of peptide conjugated human serum albumin nanoparticles for targeted cardiac uptake and drug delivery [J].
Lomis, Nikita ;
Westfall, Susan ;
Shum-Tim, Dominique ;
Prakash, Satya .
PLOS ONE, 2021, 16 (09)
[45]   In vitro flow based systems to study platelet function and thrombus formation: Recommendations for standardization: Communication from the SSC on Biorheology of the ISTH [J].
Mangin, Pierre H. ;
Gardiner, Elizabeth E. ;
Nesbitt, Warwick S. ;
Kerrigan, Steven W. ;
Korin, Netanel ;
Lam, Wilbur A. ;
Panteleev, Mikhail A. ;
Biorheology, Subcomm .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2020, 18 (03) :748-752
[46]   Two-Year Outcomes with a Magnetically Levitated Cardiac Pump in Heart Failure [J].
Mehra, M. R. ;
Goldstein, D. J. ;
Uriel, N. ;
Cleveland, J. C. ;
Yuzefpolskaya, M. ;
Salerno, C. ;
Walsh, M. N. ;
Milano, C. A. ;
Patel, C. B. ;
Ewald, G. A. ;
Itoh, A. ;
Dean, D. ;
Krishnamoorthy, A. ;
Cotts, W. G. ;
Tatooles, A. J. ;
Jorde, U. P. ;
Bruckner, B. A. ;
Estep, J. D. ;
Jeevanandam, V. ;
Sayer, G. ;
Horstmanshof, D. ;
Long, J. W. ;
Gulati, S. ;
Skipper, E. R. ;
O'Connell, J. B. ;
Heatley, G. ;
Sood, P. ;
Naka, Y. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (15) :1386-1395
[47]   Shear-sensitive nanocapsule drug release for site-specific inhibition of occlusive thrombus formation [J].
Molloy, C. P. ;
Yao, Y. ;
Kammoun, H. ;
Bonnard, T. ;
Hoefer, T. ;
Alt, K. ;
Tovar-Lopez, F. ;
Rosengarten, G. ;
Ramsland, P. A. ;
van der Meer, A. D. ;
van den Berg, A. ;
Murphy, A. J. ;
Hagemeyer, C. E. ;
Peter, K. ;
Westein, E. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2017, 15 (05) :972-982
[48]   How does hemodynamics affect rupture tissue mechanics in abdominal aortic aneurysm: Focus on wall shear stress derived parameters, time-averaged wall shear stress, oscillatory shear index, endothelial cell activation potential, and relative residence time [J].
Mutlu, Onur ;
Salman, Huseyin Enes ;
Al-Thani, Hassan ;
El-Menyar, Ayman ;
Qidwai, Uvais Ahmed ;
Yalcin, Huseyin Cagatay .
COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 154
[49]   A shear gradient-dependent platelet aggregation mechanism drives thrombus formation [J].
Nesbitt, Warwick S. ;
Westein, Erik ;
Tovar-Lopez, Francisco Javier ;
Tolouei, Elham ;
Mitchell, Arnan ;
Fu, Jia ;
Carberry, Josie ;
Fouras, Andreas ;
Jackson, Shaun P. .
NATURE MEDICINE, 2009, 15 (06) :665-U146
[50]   Platelet activation due to hemodynamic shear stresses:: Damage accumulation model and comparison to in vitro measurements [J].
Nobili, Matteo ;
Sheriff, Jawaad ;
Morbiducci, Umberto ;
Redaelli, Alberto ;
Bluestein, Danny .
ASAIO JOURNAL, 2008, 54 (01) :64-72