Machine Learning-Based Methods for Materials Inverse Design: A Review

被引:5
作者
Liu, Yingli [1 ,2 ]
Cui, Yuting [1 ,2 ]
Zhou, Haihe [1 ,2 ]
Lei, Sheng [3 ]
Yuan, Haibin [3 ]
Shen, Tao [1 ,2 ]
Yin, Jiancheng [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Yunnan Key Lab Comp Technol Applicat, Kunming 650500, Peoples R China
[3] Yunnan Tin Co Ltd, Tin Ind Branch, Gejiu 661000, Peoples R China
[4] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 02期
基金
中国国家自然科学基金;
关键词
Materials inverse design; machine learning; target properties; deep learning; new materials discovery; DEEP NEURAL-NETWORKS; MATERIALS DISCOVERY; MAGNESIUM ALLOYS; PERFORMANCE; DRIVEN; PREDICTION; ALGORITHM; STRENGTH; PHASE;
D O I
10.32604/cmc.2025.060109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding materials with specific properties is a hot topic in materials science. Traditional materials design relies on empirical and trial-and-error methods, requiring extensive experiments and time, resulting in high costs. With the development of physics, statistics, computer science, and other fields, machine learning offers opportunities for systematically discovering new materials. Especially through machine learning-based inverse design, machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties. This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design. Then, three main inverse design methods-exploration-based, model-based, and optimization-based-are analyzed in the context of different application scenarios. Finally, the applications of inverse design methods in alloys, optical materials, and acoustic materials are elaborated on, and the prospects for materials inverse design are discussed. The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.
引用
收藏
页码:1463 / 1492
页数:30
相关论文
共 117 条
[1]   Phase-Mapper: Accelerating Materials Discovery with AI [J].
Bai, Junwei ;
Xue, Yexiang ;
Bjorck, Johan ;
Le Bras, Ronan ;
Rappazzo, Brendan ;
Bernstein, Richard ;
Suram, Santosh K. ;
van Dover, R. Bruce ;
Gregoire, John M. ;
Gomes, Carla P. .
AI MAGAZINE, 2018, 39 (01) :15-26
[2]   A Continuous Action Space Tree search for INverse desiGn (CASTING) framework for materials discovery [J].
Banik, Suvo ;
Loefller, Troy ;
Manna, Sukriti ;
Chan, Henry ;
Srinivasan, Srilok ;
Darancet, Pierre ;
Hexemer, Alexander ;
Sankaranarayanan, Subramanian K. R. S. .
NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
[3]   Inverse design of aluminium alloys using multi-targeted regression [J].
Bhat, Ninad ;
Barnard, Amanda S. ;
Birbilis, Nick .
JOURNAL OF MATERIALS SCIENCE, 2024, 59 (04) :1448-1463
[4]   A Survey of Monte Carlo Tree Search Methods [J].
Browne, Cameron B. ;
Powley, Edward ;
Whitehouse, Daniel ;
Lucas, Simon M. ;
Cowling, Peter I. ;
Rohlfshagen, Philipp ;
Tavener, Stephen ;
Perez, Diego ;
Samothrakis, Spyridon ;
Colton, Simon .
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (01) :1-43
[5]   Using a generative adversarial network for the inverse design of soft morphing composite beams [J].
Brzin, Tomaz ;
Brojan, Miha .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
[6]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[7]   Machine learning-driven new material discovery [J].
Cai, Jiazhen ;
Chu, Xuan ;
Xu, Kun ;
Li, Hongbo ;
Wei, Jing .
NANOSCALE ADVANCES, 2020, 2 (08) :3115-3130
[8]   Sustainability through alloy design: Challenges and opportunities [J].
Cann, Jaclyn L. ;
De Luca, Anthony ;
Dunand, David C. ;
Dye, David ;
Miracle, Daniel B. ;
Oh, Hyun Seok ;
Olivetti, Elsa A. ;
Pollock, Tresa M. ;
Poole, Warren J. ;
Yang, Rui ;
Tasan, C. Cem .
PROGRESS IN MATERIALS SCIENCE, 2021, 117
[9]   Review of polymer oxidation and its relationship with materials performance and lifetime prediction [J].
Celina, Mathew C. .
POLYMER DEGRADATION AND STABILITY, 2013, 98 (12) :2419-2429
[10]   Application of machine learning for advanced material prediction and design [J].
Chan, Cheuk Hei ;
Sun, Mingzi ;
Huang, Bolong .
ECOMAT, 2022, 4 (04)