A monotone block coordinate descent method for solving absolute value equations☆

被引:0
作者
Luo, Tingting [1 ]
Liu, Jiayu [1 ]
Chen, Cairong [1 ]
Wang, Qun [2 ]
机构
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
[2] Zhejiang Univ Finance & Econ, Sch Data Sci, Hangzhou 310018, Peoples R China
关键词
Absolute value equation; Block coordinate descent method; Convergence; ITERATION METHOD;
D O I
10.1016/j.aml.2025.109479
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In Noor et al. (2011), the second-order Taylor expansion of the objective function is incorrectly used in constructing the descent direction. Thus, the proposed block coordinate descent method is non-monotone and a strict convergence analysis is lack. This motivates us to propose a monotone block coordinate descent method for solving absolute value equations. Under appropriate conditions, we analyze the global convergence of the algorithm and conduct numerical experiments to demonstrate its feasibility and effectiveness.
引用
收藏
页数:7
相关论文
共 20 条
  • [1] Exact and inexact Douglas-Rachford splitting methods for solving large-scale sparse absolute value equations
    Chen, Cairong
    Yu, Dongmei
    Han, Deren
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 1036 - 1060
  • [2] An inverse-free dynamical system for solving the absolute value equations
    Chen, Cairong
    Yang, Yinong
    Yu, Dongmei
    Han, Deren
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 168 : 170 - 181
  • [3] AVET: A Novel Transform Function to Improve Cancellable Biometrics Security
    Dang, Thao Mai
    Nguyen, Thuc Dinh
    Hoang, Thang
    Kim, Hyunseok
    Teoh, Andrew Beng Jin
    Choi, Deokjai
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 758 - 772
  • [4] A generalization of the Gauss-Seidel iteration method for solving absolute value equations
    Edalatpour, Vahid
    Hezari, Davod
    Salkuyeh, Davod Khojasteh
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 156 - 167
  • [5] On the convergence of the block nonlinear Gauss-Seidel method under convex constraints
    Grippo, L
    Sciandrone, M
    [J]. OPERATIONS RESEARCH LETTERS, 2000, 26 (03) : 127 - 136
  • [6] TWO CSCS-BASED ITERATION METHODS FOR SOLVING ABSOLUTE VALUE EQUATIONS
    Gu, Xian-Ming
    Huang, Ting-Zhu
    Li, Hou-Biao
    Wang, Sheng-Feng
    Li, Liang
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (04): : 1336 - 1356
  • [7] Bounds for the solutions of absolute value equations
    Hladik, Milan
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (01) : 243 - 266
  • [8] A note on absolute value equations
    Hu, Sheng-Long
    Huang, Zheng-Hai
    [J]. OPTIMIZATION LETTERS, 2010, 4 (03) : 417 - 424
  • [9] SOR-like iteration method for solving absolute value equations
    Ke, Yi-Fen
    Ma, Chang-Feng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 195 - 202
  • [10] Li X.-H., 2024, Math. Numer. Sin.