Enhancing Domain Generalization with Auto-encoders

被引:0
|
作者
Goerttler, Thomas [1 ]
Obermayer, Klaus [1 ,2 ]
机构
[1] Tech Univ Berlin, Chair Neural Informat Proc, Berlin, Germany
[2] Bernstein Ctr Computat Neurosci Berlin, Berlin, Germany
关键词
Auto-encoders; Domain generalization; Domain shift;
D O I
10.1007/978-3-031-66329-1_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In deep learning, generalization under distribution shift is still a challenge. Domain generalization is an example of domain shift where the task is to train models to perform effectively on unseen data from different but related domains. In this paper, we introduce novel solutions for domain generalization and integrate a sparse auto-encoder before the classifier for multi-class image classification. Our three approaches focus on reconstructing class-specific features while neglecting domain-specific information. They all increase the model performance on a synthetic dataset, and one approach slightly increases the performance on the iWildCam 2020 dataset. This underscores the importance of exploring techniques to support deep learning models' resilience against distribution shifts.
引用
收藏
页码:486 / 495
页数:10
相关论文
共 50 条
  • [41] An Auditory Measure for Anomaly Detection based on Auto-encoders
    Liu, Tao
    Duan, Meiqian
    Sun, Luyang
    Zhang, Bo
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 109 - 114
  • [42] An ensemble of autonomous auto-encoders for human activity recognition
    Garcia, Kemilly Dearo
    de Sa, Claudio Rebelo
    Poel, Mannes
    Carvalho, Tiago
    Mendes-Moreira, Joao
    Cardoso, Joao M. P.
    Carvalho, Andre C. P. L. F. de
    Kok, Joost N.
    NEUROCOMPUTING, 2021, 439 : 271 - 280
  • [43] Embarrassingly shallow auto-encoders for dynamic collaborative filtering
    Olivier Jeunen
    Jan Van Balen
    Bart Goethals
    User Modeling and User-Adapted Interaction, 2022, 32 : 509 - 541
  • [44] Automatic selection of latent variables in variational auto-encoders
    Jouffroy, Emma
    Giremus, Audrey
    Berthoumieu, Yannick
    Bach, Olivier
    Hugget, Alain
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 1407 - 1411
  • [45] Stacked Convolutional Auto-Encoders for Steganalysis of Digital Images
    Tan, Shunquan
    Li, Bin
    2014 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2014,
  • [46] Explicit guiding auto-encoders for learning meaningful representation
    Yanan Sun
    Hua Mao
    Yongsheng Sang
    Zhang Yi
    Neural Computing and Applications, 2017, 28 : 429 - 436
  • [47] Learning Robust Auto-Encoders With Regularizer for Linearity and Sparsity
    Shi, Yong
    Lei, Minglong
    Ma, Rongrong
    Niu, Lingfeng
    IEEE ACCESS, 2019, 7 : 17195 - 17206
  • [48] Extractive Text Summarization Using Deep Auto-encoders
    Arjun, K.
    Hariharan, M.
    Anand, Pooja
    Pradeep, V
    Raj, Reshma
    Mohan, Anuraj
    RECENT FINDINGS IN INTELLIGENT COMPUTING TECHNIQUES, VOL 3, 2018, 709 : 169 - 176
  • [49] Human Pose Estimation by a Series of Residual Auto-Encoders
    Farrajota, M.
    Rodrigues, Joao M. F.
    du Buf, J. M. H.
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2017), 2017, 10255 : 131 - 139
  • [50] EXPLORING CONVOLUTIONAL AUTO-ENCODERS FOR REPRESENTATION LEARNING ON NETWORKS
    Nerurkar, Pranav
    Chandane, Madhav
    Bhirud, Sunil
    COMPUTER SCIENCE-AGH, 2019, 20 (03): : 350 - 365