Enhancing Domain Generalization with Auto-encoders

被引:0
|
作者
Goerttler, Thomas [1 ]
Obermayer, Klaus [1 ,2 ]
机构
[1] Tech Univ Berlin, Chair Neural Informat Proc, Berlin, Germany
[2] Bernstein Ctr Computat Neurosci Berlin, Berlin, Germany
关键词
Auto-encoders; Domain generalization; Domain shift;
D O I
10.1007/978-3-031-66329-1_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In deep learning, generalization under distribution shift is still a challenge. Domain generalization is an example of domain shift where the task is to train models to perform effectively on unseen data from different but related domains. In this paper, we introduce novel solutions for domain generalization and integrate a sparse auto-encoder before the classifier for multi-class image classification. Our three approaches focus on reconstructing class-specific features while neglecting domain-specific information. They all increase the model performance on a synthetic dataset, and one approach slightly increases the performance on the iWildCam 2020 dataset. This underscores the importance of exploring techniques to support deep learning models' resilience against distribution shifts.
引用
收藏
页码:486 / 495
页数:10
相关论文
共 50 条
  • [31] Smile Recognition Based on Deep Auto-Encoders
    Liang, Shufen
    Liang, Xiangqun
    Guo, Min
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 176 - 181
  • [32] LMAE: A large margin Auto-Encoders for classification
    Liu, Weifeng
    Ma, Tengzhou
    Xie, Qiangsheng
    Tao, Dapeng
    Cheng, Jun
    SIGNAL PROCESSING, 2017, 141 : 137 - 143
  • [33] Fault detection Neural Differential Auto-encoders
    Goswami, Umang
    Kodamana, Hariprasad
    Ramteke, Manojkumar
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 189
  • [34] Solving inverse problems via auto-encoders
    Peng P.
    Jalali S.
    Yuan X.
    Jalali, Shirin (shirin.jalali@nokia-bell-labs.com), 1600, Institute of Electrical and Electronics Engineers Inc. (01): : 312 - 323
  • [35] Complete Stacked Denoising Auto-Encoders for Regression
    Fernandez-Garcia, Maria-Elena
    Sancho-Gomez, Jose-Luis
    Ros-Ros, Antonio
    Figueiras-Vidal, Anibal R.
    NEURAL PROCESSING LETTERS, 2021, 53 (01) : 787 - 797
  • [36] Dual Rejection Sampling for Wasserstein Auto-Encoders
    Hou, Liang
    Shenh, Huawei
    Cheng, Xueqi
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1190 - 1197
  • [37] Bankruptcy Prediction Using Stacked Auto-Encoders
    Soui, Makram
    Smiti, Salima
    Mkaouer, Mohamed Wiem
    Ejbali, Ridha
    APPLIED ARTIFICIAL INTELLIGENCE, 2020, 34 (01) : 80 - 100
  • [38] Marginalized Denoising Auto-encoders for Nonlinear Representations
    Chen, Minmin
    Weinberger, Kilian
    Sha, Fei
    Bengio, Yoshua
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1476 - 1484
  • [39] Improved Denoising Auto-encoders for Image Denoising
    Xiang, Qian
    Pang, Xuliang
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [40] Domain Adaptation Based on Deep Denoising Auto-Encoders for Classification of Remote Sensing Images
    Riz, Emanuele
    Demir, Begum
    Bruzzone, Lorenzo
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXII, 2016, 10004